TY - GEN
T1 - Batch Active Learning with Graph Neural Networks via Multi-Agent Deep Reinforcement Learning
AU - Zhang, Yuheng
AU - Tong, Hanghang
AU - Xia, Yinglong
AU - Zhu, Yan
AU - Chi, Yuejie
AU - Ying, Lei
N1 - Publisher Copyright:
Copyright © 2022, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2022/6/30
Y1 - 2022/6/30
N2 - Graph neural networks (GNNs) have achieved tremendous success in many graph learning tasks such as node classification, graph classification and link prediction. For the classification task, GNNs’ performance often highly depends on the number of labeled nodes and thus could be significantly hampered due to the expensive annotation cost. The sparse literature on active learning for GNNs has primarily focused on selecting only one sample each iteration, which becomes inefficient for large scale datasets. In this paper, we study the batch active learning setting for GNNs where the learning agent can acquire labels of multiple samples at each time. We formulate batch active learning as a cooperative multi-agent reinforcement learning problem and present a novel reinforced batch-mode active learning framework (BIGENE). To avoid the combinatorial explosion of the joint action space, we introduce a value decomposition method that factorizes the total Q-value into the average of individual Q-values. Moreover, we propose a novel multi-agent Q-network consisting of a graph convolutional network (GCN) component and a gated recurrent unit (GRU) component. The GCN component takes both the informativeness and inter-dependences between nodes into account and the GRU component enables the agent to consider interactions between selected nodes in the same batch. Experimental results on multiple public datasets demonstrate the effectiveness and efficiency of our proposed method.
AB - Graph neural networks (GNNs) have achieved tremendous success in many graph learning tasks such as node classification, graph classification and link prediction. For the classification task, GNNs’ performance often highly depends on the number of labeled nodes and thus could be significantly hampered due to the expensive annotation cost. The sparse literature on active learning for GNNs has primarily focused on selecting only one sample each iteration, which becomes inefficient for large scale datasets. In this paper, we study the batch active learning setting for GNNs where the learning agent can acquire labels of multiple samples at each time. We formulate batch active learning as a cooperative multi-agent reinforcement learning problem and present a novel reinforced batch-mode active learning framework (BIGENE). To avoid the combinatorial explosion of the joint action space, we introduce a value decomposition method that factorizes the total Q-value into the average of individual Q-values. Moreover, we propose a novel multi-agent Q-network consisting of a graph convolutional network (GCN) component and a gated recurrent unit (GRU) component. The GCN component takes both the informativeness and inter-dependences between nodes into account and the GRU component enables the agent to consider interactions between selected nodes in the same batch. Experimental results on multiple public datasets demonstrate the effectiveness and efficiency of our proposed method.
UR - http://www.scopus.com/inward/record.url?scp=85141361363&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85141361363&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85141361363
T3 - Proceedings of the 36th AAAI Conference on Artificial Intelligence, AAAI 2022
SP - 9118
EP - 9126
BT - AAAI-22 Technical Tracks 8
PB - Association for the Advancement of Artificial Intelligence
T2 - 36th AAAI Conference on Artificial Intelligence, AAAI 2022
Y2 - 22 February 2022 through 1 March 2022
ER -