Bang-Bang Boosting of RRTs

Alexander J. La Valle, Basak Sakcak, Steven M. Lavalle

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper presents methods for dramatically improving the performance of sampling-based kinodynamic planners. The key component is a complete, exact steering method that produces a time-optimal trajectory between any states for a vector of synchronized double integrators. This method is applied in three ways: 1) to generate RRT edges that quickly solve the two-point boundary-value problems, 2) to produce a (quasi)metric for more accurate Voronoi bias in RRTs, and 3) to iteratively time-optimize a given collision-free trajectory. Experiments are performed for state spaces with up to 2000 dimensions, resulting in improved computed trajectories and orders of magnitude computation time improvements over using ordinary metrics and constant controls.

Original languageEnglish (US)
Title of host publication2023 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2023
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2869-2876
Number of pages8
ISBN (Electronic)9781665491907
DOIs
StatePublished - 2023
Externally publishedYes
Event2023 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2023 - Detroit, United States
Duration: Oct 1 2023Oct 5 2023

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Conference

Conference2023 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2023
Country/TerritoryUnited States
CityDetroit
Period10/1/2310/5/23

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Software
  • Computer Vision and Pattern Recognition
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'Bang-Bang Boosting of RRTs'. Together they form a unique fingerprint.

Cite this