Balanced Two-Stage Residual Networks for Image Super-Resolution

Yuchen Fan, Honghui Shi, Jiahui Yu, Ding Liu, Wei Han, Haichao Yu, Zhangyang Wang, Xinchao Wang, Thomas S. Huang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this paper, balanced two-stage residual networks (BTSRN) are proposed for single image super-resolution. The deep residual design with constrained depth achieves the optimal balance between the accuracy and the speed for super-resolving images. The experiments show that the balanced two-stage structure, together with our lightweight two-layer PConv residual block design, achieves very promising results when considering both accuracy and speed. We evaluated our models on the New Trends in Image Restoration and Enhancement workshop and challenge on image super-resolution (NTIRE SR 2017). Our final model with only 10 residual blocks ranked among the best ones in terms of not only accuracy (6th among 20 final teams) but also speed (2nd among top 6 teams in terms of accuracy). The source code both for training and evaluation is available in https://github.com/ychfan/sr-ntire2017.

Original languageEnglish (US)
Title of host publicationProceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2017
PublisherIEEE Computer Society
Pages1157-1164
Number of pages8
ISBN (Electronic)9781538607336
DOIs
StatePublished - Aug 22 2017
Event30th IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2017 - Honolulu, United States
Duration: Jul 21 2017Jul 26 2017

Publication series

NameIEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
Volume2017-July
ISSN (Print)2160-7508
ISSN (Electronic)2160-7516

Other

Other30th IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2017
Country/TerritoryUnited States
CityHonolulu
Period7/21/177/26/17

ASJC Scopus subject areas

  • Computer Vision and Pattern Recognition
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Balanced Two-Stage Residual Networks for Image Super-Resolution'. Together they form a unique fingerprint.

Cite this