Baked corn (Zea mays L.) and bean (Phaseolus vulgaris L.) snack consumption lowered serum lipids and differentiated liver gene expression in C57BL/6 mice fed a high-fat diet by inhibiting PPARγ and SREBF2

Astrid Dominguez-Uscanga, Guadalupe Loarca-Piña, Elvira Gonzalez de Mejia

Research output: Contribution to journalArticlepeer-review

Abstract

The aim was to determine the effect of consuming a baked white corn/bean snack (70/30% blend) on improving diet-induced dyslipidemia and liver differential gene expression in mice fed a high-fat diet (HFD). C57BL/6 mice were randomized into six groups and different doses of the snack (0.5–2.0 g/d) supplemented to a basal HFD for 12 weeks. Unsupplemented HFD and a standard diet were used as positive and negative controls, respectively. Groups receiving HFD1.0, HFD1.5 and HFD2.0 showed attenuation in body weight gain (20%). Serum cholesterol and triglycerides were reduced (P<.05), 29% and 31%, respectively. Blood glucose was also reduced (P<.05) in all groups receiving the snack. Histological analysis showed a reduction in adipocyte diameters (P<.05) suggesting an attenuation of lipid accumulation. Snack consumption induced differential expression of 529 genes in the liver; RGS16 was the highest up-regulated molecule (+15-fold change). Increased expression of this gene could have improved glucose metabolism in HFD2.0. Ingenuity Pathway Analysis downstream analysis showed a predicted inhibition of target genes of peroxisome PPARγ and key regulators of lipogenic genes in the liver. The results suggest that consumption of a white corn/bean snack (70%/30% blend) attenuates weight gain, fat mass accumulation, adipocyte size and nonalcoholic fatty liver disease in HFD-fed mice by inhibiting PPARγ and SREBF2. The study proposes that this type of product might be beneficial by preventing dyslipidemia, obesity and hepatic steatosis.

Original languageEnglish (US)
Pages (from-to)1-15
Number of pages15
JournalJournal of Nutritional Biochemistry
Volume50
DOIs
StatePublished - Dec 2017

Keywords

  • Baked snack
  • C57BL/6 mice
  • Corn/bean
  • Diet-induced hyperlipidemia
  • Lipid metabolism
  • Obesity

ASJC Scopus subject areas

  • Endocrinology, Diabetes and Metabolism
  • Biochemistry
  • Molecular Biology
  • Nutrition and Dietetics
  • Clinical Biochemistry

Fingerprint

Dive into the research topics of 'Baked corn (Zea mays L.) and bean (Phaseolus vulgaris L.) snack consumption lowered serum lipids and differentiated liver gene expression in C57BL/6 mice fed a high-fat diet by inhibiting PPARγ and SREBF2'. Together they form a unique fingerprint.

Cite this