Bad-metal relaxation dynamics in a Fermi lattice gas

W. Xu, W. R. McGehee, W. N. Morong, B. DeMarco

Research output: Contribution to journalArticlepeer-review

Abstract

Electrical current in conventional metals is carried by electrons that retain their individual character. Bad metals, such as the normal state of some high-temperature superconductors, violate this scenario, and the complete picture for their behavior remains unresolved. Here, we report phenomena consistent with bad-metal behaviour in an optical-lattice Hubbard model by measuring the transport lifetime for a mass current excited by stimulated Raman transitions. We demonstrate incompatibility with weak-scattering theory and key characteristics of bad metals: anomalous resistivity scaling consistent with T-linear behavior, the onset of incoherent transport, and the approach to the Mott–Ioffe–Regel limit. Our work demonstrates a direct method for determining the transport lifetime, which is critical to theory but difficult to measure in materials, and exposes minimal ingredients for bad-metal behavior.

Original languageEnglish (US)
Article number1588
JournalNature communications
Volume10
Issue number1
DOIs
StatePublished - Dec 1 2019

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Bad-metal relaxation dynamics in a Fermi lattice gas'. Together they form a unique fingerprint.

Cite this