BACTERICIDAL EFFECTS OF MICROPILLARS: A MOLECULAR DYNAMICS STUDY

Akash Singh, Yumeng Li

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Previous studies have shown that cicada wings has the ability to kill the bacteria on contact. Study of natural bactericidal surface in cicada wings has opened new dimensions of scientific research in bio-inspired chemical-free bactericidal surfaces. To develop and design such biomimetic bactericidal surface, it is necessary to understand the mechanical bactericidal effects of nanopillars in the presence of bacteria, which is extremely challenging due to the small relevant length and time scales. In this study, we have conducted molecular dynamics (MD) simulations to investigate the biomimetic surface with various nanopillars configurations. MD simulations is an exceptional method to simulate materials with small time and length scales with good accuracy and low computational costs. We have simulated the bacteria's model using coarse-grained modelling and conducting MD simulations. Effects of nanopillar spacing, diameter and height on the lysis process is studied in this article. It is expected that this study will provide us insights on designing nanopillars in terms of height, spacing and diameter for optimal bactericidal effects that can help in the development of chemical-free antibacterial surface.

Original languageEnglish (US)
Title of host publicationAdvanced Materials
Subtitle of host publicationDesign, Processing, Characterization and Applications; Advances in Aerospace Technology
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791886656
DOIs
StatePublished - 2022
EventASME 2022 International Mechanical Engineering Congress and Exposition, IMECE 2022 - Columbus, United States
Duration: Oct 30 2022Nov 3 2022

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
Volume3

Conference

ConferenceASME 2022 International Mechanical Engineering Congress and Exposition, IMECE 2022
Country/TerritoryUnited States
CityColumbus
Period10/30/2211/3/22

Keywords

  • Bacteria-nanopillar interaction
  • Biomimetic bactericidal surface
  • CGMD
  • MD

ASJC Scopus subject areas

  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'BACTERICIDAL EFFECTS OF MICROPILLARS: A MOLECULAR DYNAMICS STUDY'. Together they form a unique fingerprint.

Cite this