TY - JOUR
T1 - Bacterial toxin modulation of the eukaryotic cell cycle
T2 - are all cytolethal distending toxins created equally?
AU - Gargi, Amandeep
AU - Reno, Michael
AU - Blanke, Steven R.
PY - 2012
Y1 - 2012
N2 - The cytolethal distending toxins (CDTs) comprise a family of intracellular-acting bacterial protein toxins whose actions upon eukaryotic cells result in several consequences, the most characteristic of which is the induction of G(2)/M cell cycle arrest. Most CDTs are hetero-tripartite assemblies of CdtA, CdtB, and CdtC, with CdtB required for CDT-mediated cell cycle arrest. Several lines of evidence indicate that CdtA and CdtC are required for the optimal intracellular activity of CdtB, although the exact functional roles of CdtA and CdtC remain poorly understood. The genes encoding the CDTs have been identified in a diverse array of Gram-negative pathogenic bacteria. More recently, the genes encoding several CdtB subunits have been associated with alternatively linked subunits resembling the B-subunits of pertussis toxin. Although the CDTs are generally considered to all function as bacterial genotoxins, the extent to which individual members of the CDTs employ similar mechanisms of cell surface binding, uptake, and trafficking within sensitive cells is poorly understood. Recently, data have begun to emerge suggesting differences in the molecular basis by which individual CDTs interact with and enter host cells, suggesting the possibility that CDTs possess properties reflecting the specific niches idiosyncratic to those CDT bacterial pathogens that produce them. The extent to which functional differences between individual CDTs reflect the specific requirements for intoxicating cells and tissues within the diverse range of host microenvironments colonized by CDT-producing pathogenic bacteria remains to be experimentally explored.
AB - The cytolethal distending toxins (CDTs) comprise a family of intracellular-acting bacterial protein toxins whose actions upon eukaryotic cells result in several consequences, the most characteristic of which is the induction of G(2)/M cell cycle arrest. Most CDTs are hetero-tripartite assemblies of CdtA, CdtB, and CdtC, with CdtB required for CDT-mediated cell cycle arrest. Several lines of evidence indicate that CdtA and CdtC are required for the optimal intracellular activity of CdtB, although the exact functional roles of CdtA and CdtC remain poorly understood. The genes encoding the CDTs have been identified in a diverse array of Gram-negative pathogenic bacteria. More recently, the genes encoding several CdtB subunits have been associated with alternatively linked subunits resembling the B-subunits of pertussis toxin. Although the CDTs are generally considered to all function as bacterial genotoxins, the extent to which individual members of the CDTs employ similar mechanisms of cell surface binding, uptake, and trafficking within sensitive cells is poorly understood. Recently, data have begun to emerge suggesting differences in the molecular basis by which individual CDTs interact with and enter host cells, suggesting the possibility that CDTs possess properties reflecting the specific niches idiosyncratic to those CDT bacterial pathogens that produce them. The extent to which functional differences between individual CDTs reflect the specific requirements for intoxicating cells and tissues within the diverse range of host microenvironments colonized by CDT-producing pathogenic bacteria remains to be experimentally explored.
UR - http://www.scopus.com/inward/record.url?scp=84879475695&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84879475695&partnerID=8YFLogxK
U2 - 10.3389/fcimb.2012.00124
DO - 10.3389/fcimb.2012.00124
M3 - Review article
C2 - 23061054
AN - SCOPUS:84879475695
SN - 2235-2988
VL - 2
SP - 124
JO - Frontiers in Cellular and Infection Microbiology
JF - Frontiers in Cellular and Infection Microbiology
ER -