Backup Plan Constrained Model Predictive Control

Hunmin Kim, Hyungjin Yoon, Wenbin Wan, Naira Hovakimyan, Lui Sha, Petros Voulgaris

Research output: Chapter in Book/Report/Conference proceedingConference contribution


This article proposes a new safety concept: dynamically formulated backup plan safety. The backup plan safety is defined as the ability to complete one of the alternative missions formulated in real-time in the case of primary mission abortion. To incorporate this new safety concept in control problems, we formulate a feasibility maximization problem that adopts additional (virtual) input horizons toward the alternative missions on top of the input horizon toward the primary mission. Cost functions for the primary and alternative missions construct multiple objectives, and multi-horizon inputs evaluate them. To address the feasibility maximization problem, we develop a multi-horizon multi-objective model predictive path integral control (3M) algorithm. Model predictive path integral control (MPPI) is a sampling-based scheme that can help the proposed algorithm deal with nonlinear dynamic systems and achieve computational efficiency by parallel computation. Simulations of the aerial vehicle control problems demonstrate the new concept of backup plan safety and the performance of the proposed algorithm.

Original languageEnglish (US)
Title of host publication60th IEEE Conference on Decision and Control, CDC 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Number of pages6
ISBN (Electronic)9781665436595
StatePublished - 2021
Event60th IEEE Conference on Decision and Control, CDC 2021 - Austin, United States
Duration: Dec 13 2021Dec 17 2021

Publication series

NameProceedings of the IEEE Conference on Decision and Control
ISSN (Print)0743-1546
ISSN (Electronic)2576-2370


Conference60th IEEE Conference on Decision and Control, CDC 2021
Country/TerritoryUnited States

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Modeling and Simulation
  • Control and Optimization


Dive into the research topics of 'Backup Plan Constrained Model Predictive Control'. Together they form a unique fingerprint.

Cite this