Baby SRL: Modeling early language acquisition

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

A fundamental task in sentence comprehension is to assign semantic roles to sentence constituents. The structure-mapping account proposes that children start with a shallow structural analysis of sentences: children treat the number of nouns in the sentence as a cue to its semantic predicateargument structure, and represent language experience in an abstract format that permits rapid generalization to new verbs. In this paper, we tested the consequences of these representational assumptions via experiments with a system for automatic semantic role labeling (SRL), trained on a sample of child-directed speech. When the SRL was presented with representations of sentence structure consisting simply of an ordered set of nouns, it mimicked experimental findings with toddlers, including a striking error found in children. Adding features representing the position of the verb increased accuracy and eliminated the error. We show the SRL system can use incremental knowledge gain to switch from error-prone noun order features to a more accurate representation, demonstrating a possible mechanism for this process in child development.

ASJC Scopus subject areas

  • Artificial Intelligence
  • Human-Computer Interaction
  • Linguistics and Language

Cite this

Connor, M., Gertner, Y., Fisher, C., & Roth, D. (2008). Baby SRL: Modeling early language acquisition. In CoNLL 2008 - Proceedings of the Twelfth Conference on Computational Natural Language Learning (pp. 81-88). (CoNLL 2008 - Proceedings of the Twelfth Conference on Computational Natural Language Learning).