TY - JOUR
T1 - Axions, instantons, and the lattice
AU - Dine, Michael
AU - Draper, Patrick
AU - Stephenson-Haskins, Laurel
AU - Xu, Di
N1 - Funding Information:
This work was supported in part by the U.S. Department of Energy Grant No. DE-FG02-04ER41286. We thank N. Arkani-Hamed and R. Kitano for valuable comments, and Leslie Rosenberg for bringing the work of M.D. thanks the Institute for Advanced Study for its hospitality while much of this work was performed.
Publisher Copyright:
© 2017 American Physical Society.
PY - 2017/11/3
Y1 - 2017/11/3
N2 - If the QCD axion is a significant component of dark matter, and if the Universe was once hotter than a few hundred MeV, the axion relic abundance depends on the function χ(T), the temperature-dependent topological susceptibility. Uncertainties in this quantity induce uncertainties in the axion mass as a function of the relic density, or vice versa. At high temperatures, theoretical uncertainties enter through the dilute instanton gas computation, while in the intermediate and strong coupling regime, only lattice QCD can determine χ(T) precisely. We reassess the uncertainty on the instanton contribution, arguing that it amounts to less than 20% in the effective action, or a factor of 20 in χ at T=1.5 GeV. We then combine the instanton uncertainty with a range of models for χ(T) at intermediate temperatures and determine the impact on the axion relic density. We find that for a given relic density and initial misalignment angle, the combined uncertainty amounts to a factor of 2-3 in the zeroerature axion mass.
AB - If the QCD axion is a significant component of dark matter, and if the Universe was once hotter than a few hundred MeV, the axion relic abundance depends on the function χ(T), the temperature-dependent topological susceptibility. Uncertainties in this quantity induce uncertainties in the axion mass as a function of the relic density, or vice versa. At high temperatures, theoretical uncertainties enter through the dilute instanton gas computation, while in the intermediate and strong coupling regime, only lattice QCD can determine χ(T) precisely. We reassess the uncertainty on the instanton contribution, arguing that it amounts to less than 20% in the effective action, or a factor of 20 in χ at T=1.5 GeV. We then combine the instanton uncertainty with a range of models for χ(T) at intermediate temperatures and determine the impact on the axion relic density. We find that for a given relic density and initial misalignment angle, the combined uncertainty amounts to a factor of 2-3 in the zeroerature axion mass.
UR - http://www.scopus.com/inward/record.url?scp=85037713992&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85037713992&partnerID=8YFLogxK
U2 - 10.1103/PhysRevD.96.095001
DO - 10.1103/PhysRevD.96.095001
M3 - Article
AN - SCOPUS:85037713992
SN - 2470-0010
VL - 96
JO - Physical Review D
JF - Physical Review D
IS - 9
M1 - 095001
ER -