Avoiding long Berge cycles II, exact bounds for all n

Zoltán Füredi, Alexandr Kostochka, Ruth Luo

Research output: Contribution to journalArticlepeer-review

Abstract

Let EGr (n, k) denote the maximum number of edges in an n-vertex r-uniform hypergraph with no Berge cycles of length k or longer. In the first part of this work [5], we have found exact values of EGr (n, k) and described the structure of extremal hypergraphs for the case when k − 2 divides n − 1andk ≥ r +3. In this paper we determine EGr (n, k) and describe the extremal hypergraphs for all n when k ≥ r +4.

Original languageEnglish (US)
Pages (from-to)247-268
Number of pages22
JournalJournal of Combinatorics
Volume12
Issue number2
DOIs
StatePublished - 2021

Keywords

  • Berge cycles
  • extremal hypergraph theory

ASJC Scopus subject areas

  • Discrete Mathematics and Combinatorics

Fingerprint

Dive into the research topics of 'Avoiding long Berge cycles II, exact bounds for all n'. Together they form a unique fingerprint.

Cite this