Avoidance Critical Probabilistic Roadmaps for Motion Planning in Dynamic Environments

Felipe Felix Arias, Brian Ichter, Aleksandra Faust, Nancy M. Amato

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Motion planning among dynamic obstacles is an essential capability towards navigation in the real-world. Sampling-based motion planning algorithms find solutions by approximating the robot's configuration space through a graph representation, predicting or computing obstacles' trajectories, and finding feasible paths via a pathfinding algorithm. In this work, we seek to improve the performance of these subproblems by identifying regions critical to dynamic environment navigation and leveraging them to construct sparse probabilistic roadmaps. Motion planning and pathfinding algorithms should allow robots to prevent encounters with obstacles, irrespective of their trajectories, by being conscious of spatial context cues such as the location of chokepoints (e.g., doorways). Thus, we propose a self-supervised methodology for learning to identify regions frequently used for obstacle avoidance from local environment features. As an application of this concept, we leverage a neural network to generate hierarchical probabilistic roadmaps termed Avoidance Critical Probabilistic Roadmaps (ACPRM). These roadmaps contain motion structures that enable efficient obstacle avoidance, reduce the search and planning space, and increase a roadmap's reusability and coverage. ACPRMs are demonstrated to achieve up to five orders of magnitude improvement over grid-sampling in the multi-agent setting and up to ten orders of magnitude over a competitive baseline in the multi-query setting.

Original languageEnglish (US)
Title of host publication2021 IEEE International Conference on Robotics and Automation, ICRA 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages10264-10270
Number of pages7
ISBN (Electronic)9781728190778
DOIs
StatePublished - 2021
Externally publishedYes
Event2021 IEEE International Conference on Robotics and Automation, ICRA 2021 - Xi'an, China
Duration: May 30 2021Jun 5 2021

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
Volume2021-May
ISSN (Print)1050-4729

Conference

Conference2021 IEEE International Conference on Robotics and Automation, ICRA 2021
Country/TerritoryChina
CityXi'an
Period5/30/216/5/21

ASJC Scopus subject areas

  • Software
  • Artificial Intelligence
  • Electrical and Electronic Engineering
  • Control and Systems Engineering

Fingerprint

Dive into the research topics of 'Avoidance Critical Probabilistic Roadmaps for Motion Planning in Dynamic Environments'. Together they form a unique fingerprint.

Cite this