TY - GEN
T1 - Automatic Identification of Brain Independent Components in Electroencephalography Data Collected while Standing in a Virtually Immersive Environment - A Deep Learning-Based Approach
AU - Kaur, Rachneet
AU - Korolkov, Maxim
AU - Hernandez, Manuel E.
AU - Sowers, Richard
N1 - Publisher Copyright:
© 2020 IEEE.
PY - 2020/7
Y1 - 2020/7
N2 - Electroencephalography (EEG) is a commonly used method for monitoring brain activity. Automating an EEG signal processing pipeline is imperative to the exploration of real-time brain computer interface (BCI) applications. EEG analysis demands substantial training and time for removal of distinct unwanted independent components (ICs), generated via independent component analysis, corresponding to artifacts. The considerable subject-wise variations across these components motivates defining a procedural way to identify and eliminate these artifacts. We propose DeepIC-virtual, a convolutional neural network (CNN) deep learning classifier to automatically identify brain components in the ICs extracted from the subject's EEG data gathered while they are being immersed in a virtual reality (VR) environment. This work examined the feasibility of DL techniques to provide automated ICs classification on noisy and visually engaging upright stance EEG data. We collected the EEG data for six subjects while they were standing upright in a VR testing setup simulating pseudo-randomized variations in height and depth conditions and induced perturbations. An extensive 1432 IC representation images data set was generated and manually labelled via an expert as brain components or one of the six distinct removable artifacts. The supervised CNN architecture was utilized to categorize good brain ICs and bad artifactual ICs via generated images of topographical maps. Our model categorizing good versus bad IC topographical maps resulted in a binary classification accuracy and area under curve of 89.20% and 0.93 respectively. Despite significant imbalance, only 1 out of the 57 present brain ICs in the withheld testing set was miss-classified as an artifact. These results will hopefully encourage clinicians to integrate BCI methods and neurofeedback to control anxiety and provide a treatment of acrophobia, given the viability of automatic classification of artifactual ICs.
AB - Electroencephalography (EEG) is a commonly used method for monitoring brain activity. Automating an EEG signal processing pipeline is imperative to the exploration of real-time brain computer interface (BCI) applications. EEG analysis demands substantial training and time for removal of distinct unwanted independent components (ICs), generated via independent component analysis, corresponding to artifacts. The considerable subject-wise variations across these components motivates defining a procedural way to identify and eliminate these artifacts. We propose DeepIC-virtual, a convolutional neural network (CNN) deep learning classifier to automatically identify brain components in the ICs extracted from the subject's EEG data gathered while they are being immersed in a virtual reality (VR) environment. This work examined the feasibility of DL techniques to provide automated ICs classification on noisy and visually engaging upright stance EEG data. We collected the EEG data for six subjects while they were standing upright in a VR testing setup simulating pseudo-randomized variations in height and depth conditions and induced perturbations. An extensive 1432 IC representation images data set was generated and manually labelled via an expert as brain components or one of the six distinct removable artifacts. The supervised CNN architecture was utilized to categorize good brain ICs and bad artifactual ICs via generated images of topographical maps. Our model categorizing good versus bad IC topographical maps resulted in a binary classification accuracy and area under curve of 89.20% and 0.93 respectively. Despite significant imbalance, only 1 out of the 57 present brain ICs in the withheld testing set was miss-classified as an artifact. These results will hopefully encourage clinicians to integrate BCI methods and neurofeedback to control anxiety and provide a treatment of acrophobia, given the viability of automatic classification of artifactual ICs.
KW - Convolutional neural networks
KW - Electroencephalography
KW - Independent component
KW - Virtual reality
UR - http://www.scopus.com/inward/record.url?scp=85091029435&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85091029435&partnerID=8YFLogxK
U2 - 10.1109/EMBC44109.2020.9175741
DO - 10.1109/EMBC44109.2020.9175741
M3 - Conference contribution
C2 - 33017939
AN - SCOPUS:85091029435
T3 - Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
SP - 95
EP - 98
BT - 42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society, EMBC 2020
Y2 - 20 July 2020 through 24 July 2020
ER -