Automatic entity recognition and typing from massive text corpora: A phrase and network mining approach

Xiang Ren, Ahmed El-Kishky, Chi Wang, Jiawei Han

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In today's computerized and information-based society, we are soaked with vast amounts of text data, ranging from news articles, scientific publications, product reviews, to a wide range of textual information from social media. To unlock the value of these unstructured text data from various domains, it is of great importance to gain an understanding of entities and their relationships. In this tutorial, we introduce data-driven methods to recognize typed entities of interest in massive, domain-specific text corpora. These methods can automatically identify token spans as entity mentions in documents and label their types (e.g., people, product, food) in a scalable way. We demonstrate on real datasets including news articles and tweets how these typed entities aid in knowledge discovery and management.

Original languageEnglish (US)
Title of host publicationKDD 2015 - Proceedings of the 21st ACM SIGKDD Conference on Knowledge Discovery and Data Mining
PublisherAssociation for Computing Machinery
Pages2319-2320
Number of pages2
ISBN (Electronic)9781450336642
DOIs
StatePublished - Aug 10 2015
Event21st ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2015 - Sydney, Australia
Duration: Aug 10 2015Aug 13 2015

Publication series

NameProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
Volume2015-August

Other

Other21st ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2015
CountryAustralia
CitySydney
Period8/10/158/13/15

ASJC Scopus subject areas

  • Software
  • Information Systems

Fingerprint Dive into the research topics of 'Automatic entity recognition and typing from massive text corpora: A phrase and network mining approach'. Together they form a unique fingerprint.

Cite this