TY - JOUR
T1 - Automatic complex schema matching across web query interfaces
T2 - A correlation mining approach
AU - He, Bin
AU - Chang, Kevin Chen Chuan
PY - 2006
Y1 - 2006
N2 - To enable information integration, schema matching is a critical step for discovering semantic correspondences of attributes across heterogeneous sources. While complex matchings are common, because of their far more complex search space, most existing techniques focus on simple 1:1 matchings. To tackle this challenge, this article takes a conceptually novel approach by viewing schema matching as correlation mining, for our task of matching Web query interfaces to integrate the myriad databases on the Internet. On this "deep Web," query interfaces generally form complex matchings between attribute groups (e.g., {author} corresponds to {first name, last name} in the Books domain). We observe that the co-occurrences patterns across query interfaces often reveal such complex semantic relationships: grouping attributes (e.g., (first name, last name}) tend to be co-present in query interfaces and thus positively correlated. In contrast, synonym attributes are negatively correlated because they rarely co-occur. This insight enables us to discover complex matchings by a correlation mining approach. In particular, we develop the DCM framework, which consists of data preprocessing, dual mining of positive and negative correlations, and finally matching construction. We evaluate the DCM framework on manually extracted interfaces and the results show good accuracy for discovering complex matchings. Further, to automate the entire matching process, we incorporate automatic techniques for interface extraction. Executing the DCM framework on automatically extracted interfaces, we find that the inevitable errors in automatic interface extraction may significantly affect the matching result. To make the DCM framework robust against such "noisy" schemas, we integrate it with a novel "ensemble" approach, which creates an ensemble of DCM matchers, by randomizing the schema data into many trials and aggregating their ranked results by taking majority voting. As a principled basis, we provide analytic justification of the robustness of the ensemble approach. Empirically, our experiments show that the "ensemblization" indeed significantly boosts the matching accuracy, over automatically extracted and thus noisy schema data. By employing the DCM framework with the ensemble approach, we thus complete an automatic process of matchings Web query interfaces.
AB - To enable information integration, schema matching is a critical step for discovering semantic correspondences of attributes across heterogeneous sources. While complex matchings are common, because of their far more complex search space, most existing techniques focus on simple 1:1 matchings. To tackle this challenge, this article takes a conceptually novel approach by viewing schema matching as correlation mining, for our task of matching Web query interfaces to integrate the myriad databases on the Internet. On this "deep Web," query interfaces generally form complex matchings between attribute groups (e.g., {author} corresponds to {first name, last name} in the Books domain). We observe that the co-occurrences patterns across query interfaces often reveal such complex semantic relationships: grouping attributes (e.g., (first name, last name}) tend to be co-present in query interfaces and thus positively correlated. In contrast, synonym attributes are negatively correlated because they rarely co-occur. This insight enables us to discover complex matchings by a correlation mining approach. In particular, we develop the DCM framework, which consists of data preprocessing, dual mining of positive and negative correlations, and finally matching construction. We evaluate the DCM framework on manually extracted interfaces and the results show good accuracy for discovering complex matchings. Further, to automate the entire matching process, we incorporate automatic techniques for interface extraction. Executing the DCM framework on automatically extracted interfaces, we find that the inevitable errors in automatic interface extraction may significantly affect the matching result. To make the DCM framework robust against such "noisy" schemas, we integrate it with a novel "ensemble" approach, which creates an ensemble of DCM matchers, by randomizing the schema data into many trials and aggregating their ranked results by taking majority voting. As a principled basis, we provide analytic justification of the robustness of the ensemble approach. Empirically, our experiments show that the "ensemblization" indeed significantly boosts the matching accuracy, over automatically extracted and thus noisy schema data. By employing the DCM framework with the ensemble approach, we thus complete an automatic process of matchings Web query interfaces.
KW - Bagging predictors
KW - Correlation mining
KW - Data integration
KW - Deep Web
KW - Ensemble
KW - Schema matching
UR - http://www.scopus.com/inward/record.url?scp=33745213976&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33745213976&partnerID=8YFLogxK
U2 - 10.1145/1132863.1132872
DO - 10.1145/1132863.1132872
M3 - Article
AN - SCOPUS:33745213976
SN - 0362-5915
VL - 31
SP - 346
EP - 395
JO - ACM Transactions on Database Systems
JF - ACM Transactions on Database Systems
IS - 1
ER -