Automatic annotation of protein motif function with gene ontology terms

Xinghua Lu, Chengxiang Zhai, Vanathi Gopalakrishnan, Bruce G. Buchanan

Research output: Contribution to journalArticlepeer-review

Abstract

Background: Conserved protein sequence motifs are short stretches of amino acid sequence patterns that potentially encode the function of proteins. Several sequence pattern searching algorithms and programs exist foridentifying candidate protein motifs at the whole genome level. However, amuch needed and importanttask is to determine the functions of the newly identified protein motifs. The Gene Ontology (GO) project is an endeavor to annotate the function of genes or protein sequences with terms from a dynamic, controlled vocabulary and these annotations serve well as a knowledge base. Results: This paperpresents methods to mine the GO knowledge base and use the association between the GO terms assigned to a sequence and the motifs matched by the same sequence as evidence for predicting the functions of novel protein motifs automatically. The task of assigning GO terms to protein motifsis viewed as both a binary classification and information retrieval problem, where PROSITE motifs are used as samples for mode training and functional prediction. The mutual information of a motif and aGO term association isfound to be a very useful feature. We take advantageof the known motifs to train a logistic regression classifier, which allows us to combine mutual information with other frequency-based features and obtain a probability of correctassociation. The trained logistic regression model has intuitively meaningful and logically plausible parameter values, and performs very well empirically according to our evaluation criteria. Conclusions: In this research, different methods for automatic annotation of protein motifs have been investigated. Empirical result demonstrated that the methods have a great potential for detecting and augmenting information about thefunctions of newly discovered candidate protein motifs.

Original languageEnglish (US)
Article number122
JournalBMC bioinformatics
Volume5
DOIs
StatePublished - Sep 2 2004

Keywords

  • Data mining
  • Feature extraction
  • Gene Ontology
  • Logistic regression
  • Protein motif
  • Supervised learning

ASJC Scopus subject areas

  • Structural Biology
  • Biochemistry
  • Molecular Biology
  • Computer Science Applications
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Automatic annotation of protein motif function with gene ontology terms'. Together they form a unique fingerprint.

Cite this