Automated Mining of Structured Knowledge from Text in the Era of Large Language Models

Yunyi Zhang, Ming Zhong, Siru Ouyang, Yizhu Jiao, Sizhe Zhou, Linyi Ding, Jiawei Han

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Massive amount of unstructured text data are generated daily, ranging from news articles to scientific papers. How to mine structured knowledge from the text data remains a crucial research question. Recently, large language models (LLMs) have shed light on the text mining field with their superior text understanding and instruction-following ability. There are typically two ways of utilizing LLMs: fine-tune the LLMs with human-annotated training data, which is labor intensive and hard to scale; prompt the LLMs in a zero-shot or few-shot way, which cannot take advantage of the useful information in the massive text data. Therefore, it remains a challenge on automated mining of structured knowledge from massive text data in the era of large language models. In this tutorial, we cover the recent advancements in mining structured knowledge using language models with very weak supervision. We will introduce the following topics in this tutorial: (1) introduction to large language models, which serves as the foundation for recent text mining tasks, (2) ontology construction, which automatically enriches an ontology from a massive corpus, (3) weakly-supervised text classification in flat and hierarchical label space, (4) weakly-supervised information extraction, which extracts entity and relation structures.

Original languageEnglish (US)
Title of host publicationKDD 2024 - Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
PublisherAssociation for Computing Machinery
Pages6644-6654
Number of pages11
ISBN (Electronic)9798400704901
DOIs
StatePublished - Aug 24 2024
Event30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2024 - Barcelona, Spain
Duration: Aug 25 2024Aug 29 2024

Publication series

NameProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
ISSN (Print)2154-817X

Conference

Conference30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2024
Country/TerritorySpain
CityBarcelona
Period8/25/248/29/24

Keywords

  • large language models
  • text mining
  • weak supervision

ASJC Scopus subject areas

  • Software
  • Information Systems

Fingerprint

Dive into the research topics of 'Automated Mining of Structured Knowledge from Text in the Era of Large Language Models'. Together they form a unique fingerprint.

Cite this