Automated grading of DFA constructions

Rajeev Alur, Loris D'Antoni, Sumit Gulwani, Dileep Kini, Mahesh Viswanathan

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

One challenge in making online education more effective is to develop automatic grading software that can provide meaningful feedback. This paper provides a solution to automatic grading of the standard computation-theory problem that asks a student to construct a deterministic finite automaton (DFA) from the given description of its language. We focus on how to assign partial grades for incorrect answers. Each student's answer is compared to the correct DFA using a hybrid of three techniques devised to capture different classes of errors. First, in an attempt to catch syntactic mistakes, we compute the edit distance between the two DFA descriptions. Second, we consider the entropy of the symmetric difference of the languages of the two DFAs, and compute a score that estimates the fraction of the number of strings on which the student answer is wrong. Our third technique is aimed at capturing mistakes in reading of the problem description. For this purpose, we consider a description language MOSEL, which adds syntactic sugar to the classical Monadic Second Order Logic, and allows defining regular languages in a concise and natural way. We provide algorithms, along with optimizations, for transforming MOSEL descriptions into DFAs and vice-versa. These allow us to compute the syntactic edit distance of the incorrect answer from the correct one in terms of their logical representations. We report an experimental study that evaluates hundreds of answers submitted by (real) students by comparing grades/feedback computed by our tool with human graders. Our conclusion is that the tool is able to assign partial grades in a meaningful way, and should be preferred over the human graders for both scalability and consistency.

Original languageEnglish (US)
Title of host publicationIJCAI 2013 - Proceedings of the 23rd International Joint Conference on Artificial Intelligence
Pages1976-1982
Number of pages7
StatePublished - 2013
Event23rd International Joint Conference on Artificial Intelligence, IJCAI 2013 - Beijing, China
Duration: Aug 3 2013Aug 9 2013

Publication series

NameIJCAI International Joint Conference on Artificial Intelligence
ISSN (Print)1045-0823

Other

Other23rd International Joint Conference on Artificial Intelligence, IJCAI 2013
Country/TerritoryChina
CityBeijing
Period8/3/138/9/13

ASJC Scopus subject areas

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Automated grading of DFA constructions'. Together they form a unique fingerprint.

Cite this