Automated estimation of cementitious sorptivity via computer vision

Hossein Kabir, Jordan Wu, Sunav Dahal, Tony Joo, Nishant Garg

Research output: Contribution to journalArticlepeer-review

Abstract

Monitoring water uptake in cementitious systems is crucial to assess their durability against corrosion, salt attack, and freeze-thaw damage. However, gauging absorption currently relies on labor-intensive and infrequent weight measurements, as outlined in ASTM C1585. To address this issue, we introduce a custom computer vision model trained on 6234 images, consisting of 4000 real and 2234 synthetic, that automatically detects the water level in prismatic samples absorbing water. This model provides accurate and frequent estimations of water penetration values every minute. After training the model on 1440 unique data points, including 15 paste mixtures with varying water-to-cement ratios from 0.4 to 0.8 and curing periods of 1 to 7 days, we can now predict initial and secondary sorptivities in real time with high confidence, achieving R² > 0.9. Finally, we demonstrate its application on mortar and concrete systems, opening a pathway toward low-cost and automated durability assessment of construction materials.

Original languageEnglish (US)
Article number9935
JournalNature communications
Volume15
Issue number1
Early online dateNov 15 2024
DOIs
StatePublished - Dec 2024

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Automated estimation of cementitious sorptivity via computer vision'. Together they form a unique fingerprint.

Cite this