AutoMap: Automatic Medical Code Mapping for Clinical Prediction Model Deployment

Zhenbang Wu, Cao Xiao, Lucas M. Glass, David M. Liebovitz, Jimeng Sun

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Given a deep learning model trained on data from a source hospital, how to deploy the model to a target hospital automatically? How to accommodate heterogeneous medical coding systems across different hospitals? Standard approaches rely on existing medical code mapping tools, which have several practical limitations. To tackle this problem, we propose AutoMap to automatically map the medical codes across different EHR systems in a coarse-to-fine manner: (1) Ontology-level Alignment: We leverage the ontology structure to learn a coarse alignment between the source and target medical coding systems; (2) Code-level Refinement: We refine the alignment at a fine-grained code level for the downstream tasks using a teacher-student framework. We evaluate AutoMap using several deep learning models with two real-world EHR datasets: eICU and MIMIC-III. Results show that AutoMap achieves relative improvements up to 3.9% (AUC-ROC) and 8.7% (AUC-PR) for mortality prediction, and up to 4.7% (AUC-ROC) and 3.7% (F1) for length-of-stay estimation. Further, we show that AutoMap can provide accurate mapping across coding systems. Lastly, we demonstrate that AutoMap can adapt to two challenging scenarios: (1) mapping between completely different coding systems and (2) between completely different hospitals.

Original languageEnglish (US)
Title of host publicationMachine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2022, Proceedings
EditorsMassih-Reza Amini, Stéphane Canu, Asja Fischer, Tias Guns, Petra Kralj Novak, Grigorios Tsoumakas
PublisherSpringer
Pages505-520
Number of pages16
ISBN (Print)9783031263897
DOIs
StatePublished - 2023
Event22nd Joint European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD 2022 - Grenoble, France
Duration: Sep 19 2022Sep 23 2022

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume13714 LNAI
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference22nd Joint European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD 2022
Country/TerritoryFrance
CityGrenoble
Period9/19/229/23/22

Keywords

  • Clinical prediction model deployment
  • Electronic health records
  • Medical code mapping

ASJC Scopus subject areas

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'AutoMap: Automatic Medical Code Mapping for Clinical Prediction Model Deployment'. Together they form a unique fingerprint.

Cite this