Atractylenolide I enhances responsiveness to immune checkpoint blockade therapy by activating tumor antigen presentation

Hanchen Xu, Kevin Van Der Jeught, Zhuolong Zhou, Lu Zhang, Tao Yu, Yifan Sun, Yujing Li, Changlin Wan, Ka Man So, Degang Liu, Michael Frieden, Yuanzhang Fang, Amber L. Mosley, Xiaoming He, Xinna Zhang, George E. Sandusky, Yunlong Liu, Samy O. Meroueh, Chi Zhang, Aruna B. WijeratneCheng Huang, Guang Ji, Xiongbin Lu

Research output: Contribution to journalArticlepeer-review

Abstract

One of the primary mechanisms of tumor cell immune evasion is the loss of antigenicity, which arises due to lack of immunogenic tumor antigens as well as dysregulation of the antigen processing machinery. In a screen for small-molecule compounds from herbal medicine that potentiate T cell–mediated cytotoxicity, we identified atractylenolide I (ATT-I), which substantially promotes tumor antigen presentation of both human and mouse colorectal cancer (CRC) cells and thereby enhances the cytotoxic response of CD8+ T cells. Cellular thermal shift assay (CETSA) with multiplexed quantitative mass spectrometry identified the proteasome 26S subunit non–ATPase 4 (PSMD4), an essential component of the immunoproteasome complex, as a primary target protein of ATT-I. Binding of ATT-I with PSMD4 augments the antigen-processing activity of immunoproteasome, leading to enhanced MHC-I–mediated antigen presentation on cancer cells. In syngeneic mouse CRC models and human patient–derived CRC organoid models, ATT-I treatment promotes the cytotoxicity of CD8+ T cells and thus profoundly enhances the efficacy of immune checkpoint blockade therapy. Collectively, we show here that targeting the function of immunoproteasome with ATT-I promotes tumor antigen presentation and empowers T cell cytotoxicity, thus elevating the tumor response to immunotherapy.

Original languageEnglish (US)
Article numbere146832
JournalJournal of Clinical Investigation
Volume131
Issue number10
DOIs
StatePublished - May 2021
Externally publishedYes

ASJC Scopus subject areas

  • General Medicine

Fingerprint

Dive into the research topics of 'Atractylenolide I enhances responsiveness to immune checkpoint blockade therapy by activating tumor antigen presentation'. Together they form a unique fingerprint.

Cite this