Abstract
Finding the maximum a-posteriori (MAP) assignment is a central task for structured prediction. Since modern applications give rise to very large structured problem instances, there is increasing need for efficient solvers. In this work we propose to improve the efficiency of coordinate-minimization-based dual-decomposition solvers by running their updates asynchronously in parallel. In this case messagepassing inference is performed by multiple processing units simultaneously without coordination, all reading and writing to shared memory. We analyze the convergence properties of the resulting algorithms and identify settings where speedup gains can be expected. Our numerical evaluations show that this approach indeed achieves significant speedups in common computer vision tasks.
Original language | English (US) |
---|---|
Pages (from-to) | 5735-5745 |
Number of pages | 11 |
Journal | Advances in Neural Information Processing Systems |
Volume | 2017-December |
State | Published - 2017 |
Event | 31st Annual Conference on Neural Information Processing Systems, NIPS 2017 - Long Beach, United States Duration: Dec 4 2017 → Dec 9 2017 |
ASJC Scopus subject areas
- Computer Networks and Communications
- Information Systems
- Signal Processing