Asynchronous parallel coordinate minimization for MAP inference

Research output: Contribution to journalConference articlepeer-review


Finding the maximum a-posteriori (MAP) assignment is a central task for structured prediction. Since modern applications give rise to very large structured problem instances, there is increasing need for efficient solvers. In this work we propose to improve the efficiency of coordinate-minimization-based dual-decomposition solvers by running their updates asynchronously in parallel. In this case messagepassing inference is performed by multiple processing units simultaneously without coordination, all reading and writing to shared memory. We analyze the convergence properties of the resulting algorithms and identify settings where speedup gains can be expected. Our numerical evaluations show that this approach indeed achieves significant speedups in common computer vision tasks.

Original languageEnglish (US)
Pages (from-to)5735-5745
Number of pages11
JournalAdvances in Neural Information Processing Systems
StatePublished - 2017
Event31st Annual Conference on Neural Information Processing Systems, NIPS 2017 - Long Beach, United States
Duration: Dec 4 2017Dec 9 2017

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing


Dive into the research topics of 'Asynchronous parallel coordinate minimization for MAP inference'. Together they form a unique fingerprint.

Cite this