TY - JOUR
T1 - Asymptotic Performance of Port-Based Teleportation
AU - Christandl, Matthias
AU - Leditzky, Felix
AU - Majenz, Christian
AU - Smith, Graeme
AU - Speelman, Florian
AU - Walter, Michael
N1 - Funding Information:
We acknowledge interesting discussions with Charles Bordenave, Benoît Collins, Marek Mozrzymas, Māris Ozols, Jan Philip Solovej, Sergii Strelchuk, and Michał Studziński. MC and FS acknowledge financial support from the European Research Council (ERC Grant Agreement No. 337603) and VILLUM FONDEN via the QMATH Centre of Excellence (Grant No. 10059). MC further acknowledges the Quant-ERA project Quantalgo and the hospitality of the Center for Theoretical Physics at MIT, where part of this work was done. FL and GS are supported by National Science Foundation (NSF) Grant No. PHY 1734006. FL appreciates the hospitality of QuSoft, CWI, and the University of Amsterdam, where part of this work was done. CM was supported by a Netherlands Organisation for Scientific Research (NWO) VIDI Grant (639.022.519). GS is supported by the NSF Grant No. CCF 1652560. MW thanks JILA for hospitality, where this work was partly initiated. MW acknowledges financial support by the NWO through Veni Grant No. 680-47-459.
Publisher Copyright:
© 2020, The Author(s).
PY - 2021/1
Y1 - 2021/1
N2 - Quantum teleportation is one of the fundamental building blocks of quantum Shannon theory. While ordinary teleportation is simple and efficient, port-based teleportation (PBT) enables applications such as universal programmable quantum processors, instantaneous non-local quantum computation and attacks on position-based quantum cryptography. In this work, we determine the fundamental limit on the performance of PBT: for arbitrary fixed input dimension and a large number N of ports, the error of the optimal protocol is proportional to the inverse square of N. We prove this by deriving an achievability bound, obtained by relating the corresponding optimization problem to the lowest Dirichlet eigenvalue of the Laplacian on the ordered simplex. We also give an improved converse bound of matching order in the number of ports. In addition, we determine the leading-order asymptotics of PBT variants defined in terms of maximally entangled resource states. The proofs of these results rely on connecting recently-derived representation-theoretic formulas to random matrix theory. Along the way, we refine a convergence result for the fluctuations of the Schur–Weyl distribution by Johansson, which might be of independent interest.
AB - Quantum teleportation is one of the fundamental building blocks of quantum Shannon theory. While ordinary teleportation is simple and efficient, port-based teleportation (PBT) enables applications such as universal programmable quantum processors, instantaneous non-local quantum computation and attacks on position-based quantum cryptography. In this work, we determine the fundamental limit on the performance of PBT: for arbitrary fixed input dimension and a large number N of ports, the error of the optimal protocol is proportional to the inverse square of N. We prove this by deriving an achievability bound, obtained by relating the corresponding optimization problem to the lowest Dirichlet eigenvalue of the Laplacian on the ordered simplex. We also give an improved converse bound of matching order in the number of ports. In addition, we determine the leading-order asymptotics of PBT variants defined in terms of maximally entangled resource states. The proofs of these results rely on connecting recently-derived representation-theoretic formulas to random matrix theory. Along the way, we refine a convergence result for the fluctuations of the Schur–Weyl distribution by Johansson, which might be of independent interest.
UR - http://www.scopus.com/inward/record.url?scp=85096406038&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85096406038&partnerID=8YFLogxK
U2 - 10.1007/s00220-020-03884-0
DO - 10.1007/s00220-020-03884-0
M3 - Article
C2 - 33568835
AN - SCOPUS:85096406038
SN - 0010-3616
VL - 381
SP - 379
EP - 451
JO - Communications in Mathematical Physics
JF - Communications in Mathematical Physics
IS - 1
ER -