Asymptotic analysis of a mode III stationary crack in a ductile functionally graded material

Dhirendra V. Kubair, Philippe H Geubelle, John Lambros

Research output: Contribution to journalArticlepeer-review

Abstract

The dominant and higher-order asymptotic stress and displacement fields surrounding a stationary crack embedded in a ductile functionally graded material subjected to antiplane shear loading are derived. The plastic material gradient is assumed to be in the radial direction only and elastic effects are neglected. As in the elastic case, the leading (most singular) term in the asymptotic expansion is the same in the graded material as in the homogeneous one with the properties evaluated at the crack tip location. Assuming a power law for the plastic strains and another power law for the material spatial gradient, we derive the next term in the asymptotic expansion for the near-tip fields. The second term in the series may or may not differ from that of the homogeneous case depending on the particular material property variation. This result is a consequence of the interaction between the plasticity effects associated with a loading dependent length scale (the plastic zone size) and the inhomogeneity effects, which are also characterized by a separate length scale (the property gradient variation).

Original languageEnglish (US)
Pages (from-to)461-467
Number of pages7
JournalJournal of Applied Mechanics, Transactions ASME
Volume72
Issue number4
DOIs
StatePublished - Jul 1 2005

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Asymptotic analysis of a mode III stationary crack in a ductile functionally graded material'. Together they form a unique fingerprint.

Cite this