Assessment of distribution of ventilation and regional lung compliance by electrical impedance tomography in anaesthetized horses undergoing alveolar recruitment manoeuvres

Tamas D. Ambrisko, Johannes Schramel, Klaus Hopster, Sabine Kästner, Yves Moens

Research output: Contribution to journalArticle


Objective To examine changes in the distribution of ventilation and regional lung compliances in anaesthetized horses during the alveolar recruitment manoeuvre (ARM). Study design Experimental study in which a series of treatments were administered in a fixed order on one occasion. Animals Five adult Warmblood horses. Methods Animals were anaesthetized (xylazine, midazolam–ketamine, isoflurane), placed in dorsal recumbency and ventilated with 100% oxygen using peak inspiratory pressure (PIP) and positive end-expiratory pressure (PEEP) of 20 cmH2O and 0 cmH2O, respectively. Thoracic electrical impedance tomography (EIT), spirometry and routine anaesthesia monitoring were performed. At 90 minutes after induction of anaesthesia, PIP and PEEP were increased in steps of 5 cmH2O to 50 cmH2O and 30 cmH2O, respectively, and then decreased to baseline values. Each step lasted 10 minutes. Data were recorded and functional EIT images were created using three breaths at the end of each step. Arterial blood samples were analysed. Values for left-to-right and sternal-to-dorsal centre of ventilation (COV), lung compliances and Bohr dead space were calculated. Results Distribution of ventilation drifted leftward and dorsally during recruitment. Mean ± standard deviation (SD) values at baseline and highest airway pressures, respectively, were 49.9 ± 0.7% and 48.0 ± 0.6% for left-to-right COV (p = 0.009), and 46.3 ± 2.0% and 54.6 ± 2.0% for sternal-to-dorsal COV (p = 0.0001). Compliance of dependent lung regions and PaO2 increased, whereas compliance of non-dependent lung regions decreased during ARM and then returned to baseline (p < 0.001). Bohr dead space decreased after ARM (p = 0.007). Interestingly, PaO2 correlated to the compliance of the dependent lung (r2 = 0.71, p < 0.001). Conclusions and clinical relevance The proportion of tidal volume distributed to dependent and left lung regions increased during ARM, presumably as a result of opening atelectasis. Monitoring compliance of the dependent lung with EIT may substitute PaO2 measurements during ARM to identify an optimal PEEP.

Original languageEnglish (US)
Pages (from-to)264-272
Number of pages9
JournalVeterinary Anaesthesia and Analgesia
Issue number2
StatePublished - Mar 2017



  • distribution of ventilation
  • electrical impedance tomography
  • horse
  • lung compliance
  • respiratory

ASJC Scopus subject areas

  • veterinary(all)

Cite this