Assembler: Efficient discovery of spatial co-evolving patterns in massive geo-sensory data

Chao Zhang, Yu Zheng, Xiuli Ma, Jiawei Han

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Recent years have witnessed the wide proliferation of geo-sensory applications wherein a bundle of sensors are deployed at different locations to cooperatively monitor the target condition. Given massive geo-sensory data, we study the problem of mining spatial coevolving patterns (SCPs), i.e., groups of sensors that are spatially correlated and co-evolve frequently in their readings. SCP mining is of great importance to various real-world applications, yet it is challenging because (1) the truly interesting evolutions are often flooded by numerous trivial fluctuations in the geo-sensory time series; and (2) the pattern search space is extremely large due to the spatiotemporal combinatorial nature of SCP. In this paper, we propose a two-stage method called Assembler. In the first stage, Assembler filters trivial fluctuations using wavelet transform and detects frequent evolutions for individual sensors via a segment-and-group approach. In the second stage, Assembler generates SCPs by assembling the frequent evolutions of individual sensors. Leveraging the spatial constraint, it conceptually organizes all the SCPs into a novel structure called the SCP search tree, which facilitates the effective pruning of the search space to generate SCPs efficiently. Our experiments on both real and synthetic data sets show that Assembler is effective, efficient, and scalable.

Original languageEnglish (US)
Title of host publicationKDD 2015 - Proceedings of the 21st ACM SIGKDD Conference on Knowledge Discovery and Data Mining
PublisherAssociation for Computing Machinery
Pages1415-1424
Number of pages10
ISBN (Electronic)9781450336642
DOIs
StatePublished - Aug 10 2015
Event21st ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2015 - Sydney, Australia
Duration: Aug 10 2015Aug 13 2015

Publication series

NameProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
Volume2015-August

Other

Other21st ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2015
CountryAustralia
CitySydney
Period8/10/158/13/15

Keywords

  • Co-evolving pattern
  • Sensor network
  • Spatiotemporal data

ASJC Scopus subject areas

  • Software
  • Information Systems

Fingerprint Dive into the research topics of 'Assembler: Efficient discovery of spatial co-evolving patterns in massive geo-sensory data'. Together they form a unique fingerprint.

Cite this