TY - GEN
T1 - Approximation algorithms for Euler genus and related problems
AU - Chekuri, Chandra
AU - Sidiropoulos, Anastasios
PY - 2013
Y1 - 2013
N2 - The Euler genus of a graph is a fundamental and well-studied parameter in graph theory and topology. Computing it has been shown to be NP-hard by Thomassen [23], [24], and it is known to be fixed-parameter tractable. However, the approximability of the Euler genus is wide open. While the existence of an O(1)-approximation is not ruled out, only an O( √ n)-approximation [3] is known even in bounded degree graphs. In this paper we give a polynomialtime algorithm which on input a bounded-degree graph of Euler genus g, computes a drawing into a surface of Euler genus gO(1).logO(1) n. Combined with the upper bound from [3], our result also implies a O(n1/2-α)- approximation, for some constant α > 0. Using our algorithm for approximating the Euler genus as a subroutine, we obtain, in a unified fashion, algorithms with approximation ratios of the form OPTO(1).logO(1) n for several related problems on bounded degree graphs. These include the problems of orientable genus, crossing number, and planar edge and vertex deletion problems. Our algorithm and proof of correctness for the crossing number problem is simpler compared to the long and difficult proof in the recent breakthrough by Chuzhoy [5], while essentially obtaining a qualitatively similar result. For planar edge and vertex deletion problems our results are the first to obtain a bound of form poly(OPT, log n). We also highlight some further applications of our results in the design of algorithms for graphs with small genus. Many such algorithms require that a drawing of the graph is given as part of the input. Our results imply that in several interesting cases, we can implement such algorithms even when the drawing is unknown.
AB - The Euler genus of a graph is a fundamental and well-studied parameter in graph theory and topology. Computing it has been shown to be NP-hard by Thomassen [23], [24], and it is known to be fixed-parameter tractable. However, the approximability of the Euler genus is wide open. While the existence of an O(1)-approximation is not ruled out, only an O( √ n)-approximation [3] is known even in bounded degree graphs. In this paper we give a polynomialtime algorithm which on input a bounded-degree graph of Euler genus g, computes a drawing into a surface of Euler genus gO(1).logO(1) n. Combined with the upper bound from [3], our result also implies a O(n1/2-α)- approximation, for some constant α > 0. Using our algorithm for approximating the Euler genus as a subroutine, we obtain, in a unified fashion, algorithms with approximation ratios of the form OPTO(1).logO(1) n for several related problems on bounded degree graphs. These include the problems of orientable genus, crossing number, and planar edge and vertex deletion problems. Our algorithm and proof of correctness for the crossing number problem is simpler compared to the long and difficult proof in the recent breakthrough by Chuzhoy [5], while essentially obtaining a qualitatively similar result. For planar edge and vertex deletion problems our results are the first to obtain a bound of form poly(OPT, log n). We also highlight some further applications of our results in the design of algorithms for graphs with small genus. Many such algorithms require that a drawing of the graph is given as part of the input. Our results imply that in several interesting cases, we can implement such algorithms even when the drawing is unknown.
UR - http://www.scopus.com/inward/record.url?scp=84893443249&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84893443249&partnerID=8YFLogxK
U2 - 10.1109/FOCS.2013.26
DO - 10.1109/FOCS.2013.26
M3 - Conference contribution
AN - SCOPUS:84893443249
SN - 9780769551357
T3 - Proceedings - Annual IEEE Symposium on Foundations of Computer Science, FOCS
SP - 167
EP - 176
BT - Proceedings - 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, FOCS 2013
T2 - 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, FOCS 2013
Y2 - 27 October 2013 through 29 October 2013
ER -