Approximating the Nash social welfare with budget-additive valuations

Jugal Garg, Martin Hoefer, Kurt Mehlhorn

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We present the first constant-factor approximation algorithm for maximizing the Nash social welfare when allocating indivisible items to agents with budget-additive valuation functions. Budget-additive valuations represent an important class of submodular functions. They have attracted a lot of research interest in recent years due to many interesting applications. For every " > 0, our algorithm obtains a (2:404 + ϵ)-approximation in time polynomial in the input size and 1=". Our algorithm relies on rounding an approximate equilibrium in a linear Fisher market where sellers have earning limits (upper bounds on the amount of money they want to earn) and buyers have utility limits (upper bounds on the amount of utility they want to achieve). In contrast to markets with either earning or utility limits, these markets have not been studied before. They turn out to have fundamentally different properties. Although the existence of equilibria is not guaranteed, we show that the market instances arising from the Nash social welfare problem always have an equilibrium. Further, we show that the set of equilibria is not convex, answering a question of [17]. We design an FPTAS to compute an approximate equilibrium, a result that may be of independent interest.

Original languageEnglish (US)
Title of host publication29th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018
EditorsArtur Czumaj
PublisherAssociation for Computing Machinery
Pages2326-2340
Number of pages15
ISBN (Electronic)9781611975031
DOIs
StatePublished - 2018
Event29th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018 - New Orleans, United States
Duration: Jan 7 2018Jan 10 2018

Publication series

NameProceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms

Other

Other29th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018
CountryUnited States
CityNew Orleans
Period1/7/181/10/18

ASJC Scopus subject areas

  • Software
  • Mathematics(all)

Fingerprint Dive into the research topics of 'Approximating the Nash social welfare with budget-additive valuations'. Together they form a unique fingerprint.

Cite this