## Abstract

We study the problem of approximating maximum Nash social welfare (NSW) when allocating m indivisible items among n asymmetric agents with submodular valuations. The NSW is a well-established notion of fairness and efficiency, defined as the weighted geometric mean of agents' valuations. For special cases of the problem with symmetric agents and additive(-like) valuation functions, approximation algorithms have been designed using approaches customized for these specific settings, and they fail to extend to more general settings. Hence, no approximation algorithm with factor independent of m is known either for asymmetric agents with additive valuations or for symmetric agents beyond additive(-like) valuations. In this paper, we extend our understanding of the NSW problem to far more general settings. Our main contribution is two approximation algorithms for asymmetric agents with additive and submodular valuations respectively. Both algorithms are simple to understand and involve non-trivial modifications of a greedy repeated matchings approach. Allocations of high valued items are done separately by un-matching certain items and re-matching them, by processes that are different in both algorithms. We show that these approaches achieve approximation factors of O(n) and O(n log n) for additive and submodular case respectively, which is independent of the number of items. For additive valuations, our algorithm outputs an allocation that also achieves the fairness property of envy-free up to one item (EF1). Furthermore, we show that the NSW problem under submodular valuations is strictly harder than all currently known settings with an _{e−}^{e}_{1} factor of the hardness of approximation, even for constantly many agents. For this case, we provide a different approximation algorithm that achieves a factor of _{e−}^{e}_{1}, hence resolving it completely.

Original language | English (US) |
---|---|

Title of host publication | 31st Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2020 |

Editors | Shuchi Chawla |

Publisher | Association for Computing Machinery |

Pages | 2673-2687 |

Number of pages | 15 |

ISBN (Electronic) | 9781611975994 |

State | Published - 2020 |

Event | 31st Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2020 - Salt Lake City, United States Duration: Jan 5 2020 → Jan 8 2020 |

### Publication series

Name | Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms |
---|---|

Volume | 2020-January |

### Conference

Conference | 31st Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2020 |
---|---|

Country/Territory | United States |

City | Salt Lake City |

Period | 1/5/20 → 1/8/20 |

## ASJC Scopus subject areas

- Software
- General Mathematics