Approximating Nash social welfare under rado valuations

Jugal Garg, Edin Husić, László A. Végh

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We consider the problem of approximating maximum Nash social welfare (NSW) while allocating a set of indivisible items to n agents. The NSW is a popular objective that provides a balanced tradeoff between the often conflicting requirements of fairness and efficiency, defined as the weighted geometric mean of the agents' valuations. For the symmetric additive case of the problem, where agents have the same weight with additive valuations, the first constant-factor approximation algorithm was obtained in 2015. Subsequent work has obtained constant-factor approximation algorithms for the symmetric case under mild generalizations of additive, and O(n)-approximation algorithms for subadditive valuations and for the asymmetric case. In this paper, we make significant progress towards both symmetric and asymmetric NSW problems. We present the first constant-factor approximation algorithm for the symmetric case under Rado valuations. Rado valuations form a general class of valuation functions that arise from maximum cost independent matching problems, including as special cases assignment (OXS) valuations and weighted matroid rank functions. Furthermore, our approach also gives the first constant-factor approximation algorithm for the asymmetric case under Rado valuations, provided that the maximum ratio between the weights is bounded by a constant.

Original languageEnglish (US)
Title of host publicationSTOC 2021 - Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing
EditorsSamir Khuller, Virginia Vassilevska Williams
PublisherAssociation for Computing Machinery
Pages1412-1425
Number of pages14
ISBN (Electronic)9781450380539
DOIs
StatePublished - Jun 15 2021
Event53rd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2021 - Virtual, Online, Italy
Duration: Jun 21 2021Jun 25 2021

Publication series

NameProceedings of the Annual ACM Symposium on Theory of Computing
ISSN (Print)0737-8017

Conference

Conference53rd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2021
Country/TerritoryItaly
CityVirtual, Online
Period6/21/216/25/21

Keywords

  • approximation algorithm
  • Nash social welfare
  • Rado valuations

ASJC Scopus subject areas

  • Software

Fingerprint

Dive into the research topics of 'Approximating Nash social welfare under rado valuations'. Together they form a unique fingerprint.

Cite this