Applications of ultrasound to materials chemistry

Kenneth S. Suslick, Gareth J. Price

Research output: Contribution to journalArticlepeer-review


The chemical effects of ultrasound derive primarily from acoustic cavitation. Bubble collapse in liquids results in an enormous concentration of energy from the conversion of the kinetic energy of the liquid motion into heating of the contents of the bubble. The high local temperatures and pressures, combined with extraordinarily rapid cooling, provide a unique means for driving chemical reactions under extreme conditions. A diverse set of applications of ultrasound to enhance chemical reactivity has been explored with important uses in synthetic materials chemistry. For example, the sonochemical decomposition of volatile organometallic precursors in low-volatility solvents produces nanostructured materials in various forms with high catalytic activities. Nanostructured metals, alloys, oxides, carbides and sulfides, nanometer colloids, and nanostructured supported catalysts can all be prepared by this general route. Another important application of sonochemistry in materials chemistry has been the preparation of biomaterials, most notably protein microspheres. Such microspheres have a wide range of biomedical applications, including their use in echo contrast agents for sonography, magnetic resonance imaging, contrast enhancement, and oxygen or drug delivery. Other applications include the modification of polymers and polymer surfaces.

Original languageEnglish (US)
Pages (from-to)295-326
Number of pages32
JournalAnnual Review of Materials Science
StatePublished - 1999

ASJC Scopus subject areas

  • General Materials Science


Dive into the research topics of 'Applications of ultrasound to materials chemistry'. Together they form a unique fingerprint.

Cite this