TY - PAT
T1 - Apparatus and methods for the automated synthesis of small molecules
AU - Gillis, Eric P
AU - Burke, Martin D
AU - Ballmer, Steven G
N1 - GOVERNMENT SUPPORT This invention was made with U.S. Government support under National Institutes of Health Grant Nos. GM080436 and GM090153. The government has certain rights in the invention.
PY - 2018/1/9
Y1 - 2018/1/9
N2 - Provided are methods for purifying N-methyliminodiacetic acid (MIDA) boronates from solution. Also provided are methods for deprotection of boronic acids from their MIDA ligands. The purification and deprotection methods can be used in conjunction with methods for coupling or otherwise reacting boronic acids. Iterative cycles of deprotection, coupling, and purification can be performed to synthesize chemical compounds of interest. The methods are suitable for use in an automated chemical synthesis process. Also provided is an automated small molecule synthesizer apparatus for performing automated synthesis of small molecules using iterative cycles of deprotection, coupling, and purification in accordance with methods of the invention. Coupling and other reactions embraced by the invention include, without limitation, Suzuki-Miyaura coupling, oxidation, Swern oxidation, “Jones reagents” oxidation, reduction, Evans' aldol reaction, HWE olefination, Takai olefination, alcohol silylation, desilylation, p-methoxybenzylation, iodination, Negishi cross-coupling, Heck coupling, Miyaura borylation, Stille coupling, and Sonogashira coupling.
AB - Provided are methods for purifying N-methyliminodiacetic acid (MIDA) boronates from solution. Also provided are methods for deprotection of boronic acids from their MIDA ligands. The purification and deprotection methods can be used in conjunction with methods for coupling or otherwise reacting boronic acids. Iterative cycles of deprotection, coupling, and purification can be performed to synthesize chemical compounds of interest. The methods are suitable for use in an automated chemical synthesis process. Also provided is an automated small molecule synthesizer apparatus for performing automated synthesis of small molecules using iterative cycles of deprotection, coupling, and purification in accordance with methods of the invention. Coupling and other reactions embraced by the invention include, without limitation, Suzuki-Miyaura coupling, oxidation, Swern oxidation, “Jones reagents” oxidation, reduction, Evans' aldol reaction, HWE olefination, Takai olefination, alcohol silylation, desilylation, p-methoxybenzylation, iodination, Negishi cross-coupling, Heck coupling, Miyaura borylation, Stille coupling, and Sonogashira coupling.
M3 - Patent
M1 - 9862733
ER -