Antimicrobial peptide resistance mediates resilience of prominent gut commensals during inflammation

T. W. Cullen, W. B. Schofield, N. A. Barry, E. E. Putnam, E. A. Rundell, M. S. Trent, P. H. Degnan, C. J. Booth, H. Yu, A. L. Goodman

Research output: Contribution to journalArticlepeer-review

Abstract

Resilience to host inflammation and other perturbations is a fundamental property of gut microbial communities, yet the underlying mechanisms are not well understood. We have found that human gut microbes from all dominant phyla are resistant to high levels of inflammation-associated antimicrobial peptides (AMPs) and have identified a mechanism for lipopolysaccharide (LPS) modification in the phylum Bacteroidetes that increases AMP resistance by four orders of magnitude. Bacteroides thetaiotaomicron mutants that fail to remove a single phosphate group from their LPS were displaced from the microbiota during inflammation triggered by pathogen infection. These findings establish a mechanism that determines the stability of prominent members of a healthy microbiota during perturbation.

Original languageEnglish (US)
Pages (from-to)170-175
Number of pages6
JournalScience
Volume347
Issue number6218
DOIs
StatePublished - Jan 9 2015
Externally publishedYes

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Antimicrobial peptide resistance mediates resilience of prominent gut commensals during inflammation'. Together they form a unique fingerprint.

Cite this