Antibiotic resistance genes in the vaginal microbiota of primates not normally exposed to antibiotics

Robert T. Jeters, Angel J. Rivera, Lisa M. Boucek, Rebecca Stumpf, Steve R. Leigh, Abigail A. Salyers

Research output: Contribution to journalArticle

Abstract

Previous studies of resistance gene ecology have focused primarily on populations such as hospital patients and farm animals that are regularly exposed to antibiotics. Also, these studies have tended to focus on numerically minor populations such as enterics or enterococci. We report here a cultivation-independent approach that allowed us to assess the presence of antibiotic resistance genes in the numerically predominant populations of the vaginal microbiota of two populations of primates that are seldom or never exposed to antibiotics: baboons and mangabeys. Most of these animals were part of a captive colony in Texas that is used for scientific studies of female physiology and physical anthropology topics. Samples from some wild baboons were also tested. Vaginal swab samples, obtained in connection with a study designed to define the normal microbiota of the female vaginal canal, were tested for the presence of two types of antibiotic resistance genes: tetracycline resistance (tet) genes and erythromycin resistance (erm) genes. These genes are frequently found in human isolates of the two types of bacteria that were a substantial part of the normal microbiota of primates (Firmicutes and Bacteroidetes). Since cultivation was not feasible, polymerase chain reaction and DNA sequencing were used to detect and characterize these resistance genes. The tet(M) and tet(W) genes were found most commonly, and the tet(Q) gene was found in over a third of the samples from baboons. The ermB and ermF genes were found only in a minority of the samples. The ermG gene was not found in any of the specimens tested. Polymerase chain reaction analysis showed that at least some tet(M) and tet(Q) genes were genetically linked to DNA from known conjugative transposons (CTns), Tn916 and CTnDOT. Our results raise questions about the extent to which extensive exposure to antibiotics is the only pressure necessary to maintain resistance genes in natural settings.

Original languageEnglish (US)
Pages (from-to)309-315
Number of pages7
JournalMicrobial Drug Resistance
Volume15
Issue number4
DOIs
StatePublished - Dec 1 2009

Fingerprint

Microbiota
Microbial Drug Resistance
Primates
Anti-Bacterial Agents
Genes
Papio
vif Genes
Population
Cercocebus
Physical Anthropology
Bacteroidetes
Tetracycline Resistance
Polymerase Chain Reaction
Domestic Animals
Enterococcus
Erythromycin
Ecology
DNA Sequence Analysis
Bacteria
Pressure

ASJC Scopus subject areas

  • Microbiology
  • Immunology
  • Pharmacology
  • Microbiology (medical)

Cite this

Antibiotic resistance genes in the vaginal microbiota of primates not normally exposed to antibiotics. / Jeters, Robert T.; Rivera, Angel J.; Boucek, Lisa M.; Stumpf, Rebecca; Leigh, Steve R.; Salyers, Abigail A.

In: Microbial Drug Resistance, Vol. 15, No. 4, 01.12.2009, p. 309-315.

Research output: Contribution to journalArticle

Jeters, Robert T. ; Rivera, Angel J. ; Boucek, Lisa M. ; Stumpf, Rebecca ; Leigh, Steve R. ; Salyers, Abigail A. / Antibiotic resistance genes in the vaginal microbiota of primates not normally exposed to antibiotics. In: Microbial Drug Resistance. 2009 ; Vol. 15, No. 4. pp. 309-315.
@article{165d4da9d31b4b148f64aef3915c3db8,
title = "Antibiotic resistance genes in the vaginal microbiota of primates not normally exposed to antibiotics",
abstract = "Previous studies of resistance gene ecology have focused primarily on populations such as hospital patients and farm animals that are regularly exposed to antibiotics. Also, these studies have tended to focus on numerically minor populations such as enterics or enterococci. We report here a cultivation-independent approach that allowed us to assess the presence of antibiotic resistance genes in the numerically predominant populations of the vaginal microbiota of two populations of primates that are seldom or never exposed to antibiotics: baboons and mangabeys. Most of these animals were part of a captive colony in Texas that is used for scientific studies of female physiology and physical anthropology topics. Samples from some wild baboons were also tested. Vaginal swab samples, obtained in connection with a study designed to define the normal microbiota of the female vaginal canal, were tested for the presence of two types of antibiotic resistance genes: tetracycline resistance (tet) genes and erythromycin resistance (erm) genes. These genes are frequently found in human isolates of the two types of bacteria that were a substantial part of the normal microbiota of primates (Firmicutes and Bacteroidetes). Since cultivation was not feasible, polymerase chain reaction and DNA sequencing were used to detect and characterize these resistance genes. The tet(M) and tet(W) genes were found most commonly, and the tet(Q) gene was found in over a third of the samples from baboons. The ermB and ermF genes were found only in a minority of the samples. The ermG gene was not found in any of the specimens tested. Polymerase chain reaction analysis showed that at least some tet(M) and tet(Q) genes were genetically linked to DNA from known conjugative transposons (CTns), Tn916 and CTnDOT. Our results raise questions about the extent to which extensive exposure to antibiotics is the only pressure necessary to maintain resistance genes in natural settings.",
author = "Jeters, {Robert T.} and Rivera, {Angel J.} and Boucek, {Lisa M.} and Rebecca Stumpf and Leigh, {Steve R.} and Salyers, {Abigail A.}",
year = "2009",
month = "12",
day = "1",
doi = "10.1089/mdr.2009.0052",
language = "English (US)",
volume = "15",
pages = "309--315",
journal = "Microbial Drug Resistance",
issn = "1076-6294",
publisher = "Mary Ann Liebert Inc.",
number = "4",

}

TY - JOUR

T1 - Antibiotic resistance genes in the vaginal microbiota of primates not normally exposed to antibiotics

AU - Jeters, Robert T.

AU - Rivera, Angel J.

AU - Boucek, Lisa M.

AU - Stumpf, Rebecca

AU - Leigh, Steve R.

AU - Salyers, Abigail A.

PY - 2009/12/1

Y1 - 2009/12/1

N2 - Previous studies of resistance gene ecology have focused primarily on populations such as hospital patients and farm animals that are regularly exposed to antibiotics. Also, these studies have tended to focus on numerically minor populations such as enterics or enterococci. We report here a cultivation-independent approach that allowed us to assess the presence of antibiotic resistance genes in the numerically predominant populations of the vaginal microbiota of two populations of primates that are seldom or never exposed to antibiotics: baboons and mangabeys. Most of these animals were part of a captive colony in Texas that is used for scientific studies of female physiology and physical anthropology topics. Samples from some wild baboons were also tested. Vaginal swab samples, obtained in connection with a study designed to define the normal microbiota of the female vaginal canal, were tested for the presence of two types of antibiotic resistance genes: tetracycline resistance (tet) genes and erythromycin resistance (erm) genes. These genes are frequently found in human isolates of the two types of bacteria that were a substantial part of the normal microbiota of primates (Firmicutes and Bacteroidetes). Since cultivation was not feasible, polymerase chain reaction and DNA sequencing were used to detect and characterize these resistance genes. The tet(M) and tet(W) genes were found most commonly, and the tet(Q) gene was found in over a third of the samples from baboons. The ermB and ermF genes were found only in a minority of the samples. The ermG gene was not found in any of the specimens tested. Polymerase chain reaction analysis showed that at least some tet(M) and tet(Q) genes were genetically linked to DNA from known conjugative transposons (CTns), Tn916 and CTnDOT. Our results raise questions about the extent to which extensive exposure to antibiotics is the only pressure necessary to maintain resistance genes in natural settings.

AB - Previous studies of resistance gene ecology have focused primarily on populations such as hospital patients and farm animals that are regularly exposed to antibiotics. Also, these studies have tended to focus on numerically minor populations such as enterics or enterococci. We report here a cultivation-independent approach that allowed us to assess the presence of antibiotic resistance genes in the numerically predominant populations of the vaginal microbiota of two populations of primates that are seldom or never exposed to antibiotics: baboons and mangabeys. Most of these animals were part of a captive colony in Texas that is used for scientific studies of female physiology and physical anthropology topics. Samples from some wild baboons were also tested. Vaginal swab samples, obtained in connection with a study designed to define the normal microbiota of the female vaginal canal, were tested for the presence of two types of antibiotic resistance genes: tetracycline resistance (tet) genes and erythromycin resistance (erm) genes. These genes are frequently found in human isolates of the two types of bacteria that were a substantial part of the normal microbiota of primates (Firmicutes and Bacteroidetes). Since cultivation was not feasible, polymerase chain reaction and DNA sequencing were used to detect and characterize these resistance genes. The tet(M) and tet(W) genes were found most commonly, and the tet(Q) gene was found in over a third of the samples from baboons. The ermB and ermF genes were found only in a minority of the samples. The ermG gene was not found in any of the specimens tested. Polymerase chain reaction analysis showed that at least some tet(M) and tet(Q) genes were genetically linked to DNA from known conjugative transposons (CTns), Tn916 and CTnDOT. Our results raise questions about the extent to which extensive exposure to antibiotics is the only pressure necessary to maintain resistance genes in natural settings.

UR - http://www.scopus.com/inward/record.url?scp=70350468852&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=70350468852&partnerID=8YFLogxK

U2 - 10.1089/mdr.2009.0052

DO - 10.1089/mdr.2009.0052

M3 - Article

C2 - 19857138

AN - SCOPUS:70350468852

VL - 15

SP - 309

EP - 315

JO - Microbial Drug Resistance

JF - Microbial Drug Resistance

SN - 1076-6294

IS - 4

ER -