TY - JOUR
T1 - Anomalous suppression of the Bose glass at commensurate fillings in the disordered Bose-Hubbard model
AU - Krüger, Frank
AU - Wu, Jiansheng
AU - Phillips, Philip
PY - 2009/9/25
Y1 - 2009/9/25
N2 - We study the weakly disordered Bose-Hubbard model on a cubic lattice through a one-loop renormalization-group analysis of the corresponding effective-field theory which is explicitly derived by combining a strong-coupling expansion with a replica average over the disorder. The method is applied not only to generic uncorrelated on-site disorder but also to simultaneous hopping-disorder correlated with the differences of adjacent disorder potentials. Such correlations are inherent in fine-grained optical speckle potentials used as a source of disorder in optical lattice experiments. As a result of strong coupling, the strength of the replica-mixing disorder vertex, responsible for the emergence of a Bose glass, crucially depends on the chemical potential and the Hubbard repulsion and vanishes to leading order in the disorder at commensurate boson fillings. As a consequence, at such fillings a direct transition between the Mott insulator and the superfluid in the presence of disorder cannot be excluded on the basis of a one-loop calculation. At incommensurate fillings, at a certain length scale, the Mott insulator will eventually become unstable toward the formation of a Bose glass. Phase diagrams as a function of the microscopic parameters are presented and the finite-size crossover between the Mott-insulating state and the Bose glass is analyzed.
AB - We study the weakly disordered Bose-Hubbard model on a cubic lattice through a one-loop renormalization-group analysis of the corresponding effective-field theory which is explicitly derived by combining a strong-coupling expansion with a replica average over the disorder. The method is applied not only to generic uncorrelated on-site disorder but also to simultaneous hopping-disorder correlated with the differences of adjacent disorder potentials. Such correlations are inherent in fine-grained optical speckle potentials used as a source of disorder in optical lattice experiments. As a result of strong coupling, the strength of the replica-mixing disorder vertex, responsible for the emergence of a Bose glass, crucially depends on the chemical potential and the Hubbard repulsion and vanishes to leading order in the disorder at commensurate boson fillings. As a consequence, at such fillings a direct transition between the Mott insulator and the superfluid in the presence of disorder cannot be excluded on the basis of a one-loop calculation. At incommensurate fillings, at a certain length scale, the Mott insulator will eventually become unstable toward the formation of a Bose glass. Phase diagrams as a function of the microscopic parameters are presented and the finite-size crossover between the Mott-insulating state and the Bose glass is analyzed.
UR - http://www.scopus.com/inward/record.url?scp=70349972777&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=70349972777&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.80.094526
DO - 10.1103/PhysRevB.80.094526
M3 - Article
AN - SCOPUS:70349972777
SN - 1098-0121
VL - 80
JO - Physical Review B - Condensed Matter and Materials Physics
JF - Physical Review B - Condensed Matter and Materials Physics
IS - 9
M1 - 094526
ER -