Anomalous Quantum Hall Effect of Light in Bloch-Wave Modulated Photonic Crystals

Kejie Fang, Yunkai Wang

Research output: Contribution to journalArticlepeer-review

Abstract

Effective magnetic fields have enabled unprecedented manipulation of neutral particles including photons. In most studied cases, the effective gauge fields are defined through the phase of mode coupling between spatially discrete elements, such as optical resonators and waveguides in the case for photons. Here, in the paradigm of Bloch-wave modulated photonic crystals, we show the creation of effective magnetic fields for photons in conventional dielectric continua for the first time, via Floquet band engineering. By controlling the phase and wave vector of Bloch waves, we demonstrated the anomalous quantum Hall effect for light with distinct topological band features due to delocalized wave interference. Based on a cavity-free architecture, in which Bloch-wave modulations can be enhanced using guided resonances in photonic crystals, the study here opens the door to the realization of effective magnetic fields at large scales for optical beam steering and topological light-matter phases with broken time-reversal symmetry.

Original languageEnglish (US)
Article number233904
JournalPhysical review letters
Volume122
Issue number23
DOIs
StatePublished - Jun 14 2019

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Anomalous Quantum Hall Effect of Light in Bloch-Wave Modulated Photonic Crystals'. Together they form a unique fingerprint.

Cite this