Annotation of protein domains reveals remarkable conservation in the functional make up of proteomes across superkingdoms

Arshan Nasir, Aisha Naeem, Muhammad Jawad Khan, Horacio D. Lopez-Nicora, Gustavo Caetano-Anollés

Research output: Contribution to journalArticlepeer-review


The functional repertoire of a cell is largely embodied in its proteome, the collection of proteins encoded in the genome of an organism. The molecular functions of proteins are the direct consequence of their structure and structure can be inferred from sequence using hidden Markov models of structural recognition. Here we analyze the functional annotation of protein domain structures in almost a thousand sequenced genomes, exploring the functional and structural diversity of proteomes. We find there is a remarkable conservation in the distribution of domains with respect to the molecular functions they perform in the three superkingdoms of life. In general, most of the protein repertoire is spent in functions related to metabolic processes but there are significant differences in the usage of domains for regulatory and extra-cellular processes both within and between superkingdoms. Our results support the hypotheses that the proteomes of superkingdom Eukarya evolved via genome expansion mechanisms that were directed towards innovating new domain architectures for regulatory and extra/intracellular process functions needed for example to maintain the integrity of multicellular structure or to interact with environmental biotic and abiotic factors (e.g., cell signaling and adhesion, immune responses, and toxin production). Proteomes of microbial superkingdoms Archaea and Bacteria retained fewer numbers of domains and maintained simple and smaller protein repertoires. Viruses appear to play an important role in the evolution of superkingdoms. We finally identify few genomic outliers that deviate significantly from the conserved functional design. These include Nanoarchaeum equitans, proteobacterial symbionts of insects with extremely reduced genomes, Tenericutes and Guillardia theta. These organisms spend most of their domains on information functions, including translation and transcription, rather than on metabolism and harbor a domain repertoire characteristic of parasitic organisms. In contrast, the functional repertoire of the proteomes of the Planctomycetes-Verrucomicrobia-Chlamydiae superphylum was no different than the rest of bacteria, failing to support claims of them representing a separate superkingdom. In turn, Protista and Bacteria shared similar functional distribution patterns suggesting an ancestral evolutionary link between these groups.

Original languageEnglish (US)
Pages (from-to)869-911
Number of pages43
Issue number4
StatePublished - Dec 2011


  • Fold superfamily
  • Functional annotation
  • Molecular function
  • Protein domain
  • SCOP
  • Structure
  • Superkingdom

ASJC Scopus subject areas

  • Genetics
  • Genetics(clinical)


Dive into the research topics of 'Annotation of protein domains reveals remarkable conservation in the functional make up of proteomes across superkingdoms'. Together they form a unique fingerprint.

Cite this