Andreev processes in mesoscopic multiterminal graphene Josephson junctions

Fan Zhang, Asmaul Smitha Rashid, Mostafa Tanhayi Ahari, Wei Zhang, Krishnan Mekkanamkulam Ananthanarayanan, Run Xiao, George J. De Coster, Matthew J. Gilbert, Nitin Samarth, Morteza Kayyalha

Research output: Contribution to journalArticlepeer-review


There is growing interest in using multiterminal Josephson junctions (MTJJs) as a platform to artificially emulate topological phases and to investigate superconducting mechanisms such as multiplet Cooper pairings. Current experimental signatures in MTJJs have led to conflicting interpretations of the salient features. In this work, we report a collaborative experimental and theoretical investigation of graphene-based four-terminal Josephson junctions. We observe resonant features in the differential resistance maps that resemble those ascribed to multiplet Cooper pairings. To understand these features, we model our junctions using a circuit network of resistively and capacitively shunted junctions (RCSJs). We find that the RCSJ model successfully reproduces the observed multiplet features. Therefore, our study suggests that differential resistance measurements alone are insufficient to conclusively distinguish resonant Andreev reflection processes from semiclassical circuit-network effects.

Original languageEnglish (US)
Article numberL140503
JournalPhysical Review B
Issue number14
StatePublished - Apr 1 2023
Externally publishedYes

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics


Dive into the research topics of 'Andreev processes in mesoscopic multiterminal graphene Josephson junctions'. Together they form a unique fingerprint.

Cite this