Anchoring molecular chromophores to colloidal gold nanocrystals: Surface-enhanced Raman evidence for strong electronic coupling and irreversible structural locking

Ximei Qian, Steven R. Emory, Shuming Nie

Research output: Contribution to journalArticlepeer-review

Abstract

High-affinity anchoring groups such as isothiocyanate (ITC, -N=C=S) are often used to attach organic chromophores (reporter molecules) to colloidal gold nanocrystals for surface-enhanced Raman scattering (SERS), to atomically smooth gold surfaces for tip-enhanced Raman scattering, and to scanning tunneling microscopy probes (nanosized electrodes) for single-molecule conductance measurements. However, it is still unclear how the attached molecules interact electronically with the underlying surface, and how the anchoring group might affect the electronic and optical properties of such nanoscale systems. Here we report systematic surface-enhanced Raman studies of two organic chromophores, malachite green (MG) and its ITC derivative (MGITC), that have very different functional groups for surface binding but nearly identical spectroscopic properties. A surprise finding is that, under the same experimental conditions, the SERS signal intensities for MGITC are nearly 500-fold higher than those of MG. Correcting for the intrinsic difference in scattering cross sections of these two dyes, we estimate that the MGITC enhancement factors are ∼200-fold higher than for MG. Furthermore, pH-dependent studies reveal that the surface structure of MGITC is irreversibly stabilized or "locked" in its π-conjugated form and is no longer responsive to pH changes. In contrast, the electronic structure of adsorbed MG is still sensitive to pH and can be switched between its localized and delocalized electronic forms. These results indicate that ITC is indeed an unusual anchoring group that enables strong electronic coupling between gold and the adsorbed dye, leading to more efficient chemical enhancement and higher overall enhancement factors.

Original languageEnglish (US)
Pages (from-to)2000-2003
Number of pages4
JournalJournal of the American Chemical Society
Volume134
Issue number4
DOIs
StatePublished - Feb 1 2012
Externally publishedYes

ASJC Scopus subject areas

  • Catalysis
  • General Chemistry
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint

Dive into the research topics of 'Anchoring molecular chromophores to colloidal gold nanocrystals: Surface-enhanced Raman evidence for strong electronic coupling and irreversible structural locking'. Together they form a unique fingerprint.

Cite this