Analyzing potential power reduction with adaptive voltage positioning optimized for multicore processors

Abhishek Sinkar, Nam Sung Kim

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Multicore processors used in high-performance computing platforms place ever-increasing demands on efficient voltage regulator design. However, high clock frequency and power consumption of the processors have increased load current and its slew rate rapidly, posing stringent challenges for the voltage regulator design. Since a sudden load-current change incurs voltage overshoots or droops due to the limited bandwidth of voltage regulators, a tolerance window within the defined minimum and maximum voltage levels must be allowed for performance and reliability of the processors. A cost-effective regulation technique like adaptive voltage positioning uses the window by positioning the voltage level at light load-current near the upper limit to sustain negative spikes during the worst-case transient without crossing the lower limit. However, this often results in more processor power consumption than necessary since most of the load-current transients are usually smaller than the worst case. As a result, the voltage level stays much above the lower limit. In this paper, first, we analyze potential total power reduction of a high-performance quadcore processor when we can dynamically reposition regulator output voltage depending on individual core's power-states that affect processor load-current significantly. Our analysis using a 32nm predictive technology model shows that repositioning the regulator output voltage can reduce the power consumption of the processor by up to 29%. Second, we extend our analysis to consider each core's temperature and within-die spatial process variations that can affect leakage (thus total load) current substantially, which provides up to 5% additional power reduction.

Original languageEnglish (US)
Title of host publicationISLPED'09 - Proceedings of the 2009 ACM/IEEE International Symposium on Low Power Electronics and Design
Pages189-194
Number of pages6
DOIs
StatePublished - Nov 24 2009
Externally publishedYes
Event2009 ACM/IEEE International Symposium on Low Power Electronics and Design, ISLPED'09 - San Fancisco, CA, United States
Duration: Aug 19 2009Aug 21 2009

Publication series

NameProceedings of the International Symposium on Low Power Electronics and Design
ISSN (Print)1533-4678

Other

Other2009 ACM/IEEE International Symposium on Low Power Electronics and Design, ISLPED'09
CountryUnited States
CitySan Fancisco, CA
Period8/19/098/21/09

Keywords

  • Adaptive voltage positioning
  • Multicore processor

ASJC Scopus subject areas

  • Engineering(all)

Fingerprint Dive into the research topics of 'Analyzing potential power reduction with adaptive voltage positioning optimized for multicore processors'. Together they form a unique fingerprint.

Cite this