TY - JOUR
T1 - An old but simple and efficient method to elucidate the oxidation mechanism of NAD(P)H model 1-aryl-1,4-dihydronicotinamides by cations 2-methyl-5-nitroisoquinolium, tropylium, and xanthylium in aqueous solution
AU - Zhu, X. Q.
AU - Liu, Y.
AU - Zhao, B. J.
AU - Cheng, J. P.
PY - 2001/1/26
Y1 - 2001/1/26
N2 - Cations 2-methyl-5-mitroisoquinplinium (IQ+), tropylium (T+), and xanthylium (Xn+) were treated by an NAD(P)H model 1-(p-substituted phenyl)-1.4-dihydronicotinamide series (1) in buffered aqueous solution to give the corresponding reduced products by accepting hydride. Effects of the 4-substituents of 1 on the reaction rates were investigated. Hammett's linear free energy relationship analysis on the three reactions of 1 provides the reaction constants of -0.48, -2.2, and -1.4 with IQ+, T+, and Xn+ as the hydride acceptors, respectively. Comparison of the present reactions with the reaction examples whose mechanisms are well-known, such as the reaction of 1 with a one-electron oxidant Fe(CN)6-3, shows that the active site of 1 in the oxidation with IQ+ is at the 4-position on the dihydropyridine ring but that the active site of 1 in the oxidations with T+ and Xn+ is at the 1-position, which is in agreement with the results from the Brønsted-type linear analysis and the relation studies of the logarithm of the second-order rate constants with the oxidation potentials of the hydride donors. According to the dependence of the reaction mechanism on the active site of 1, a conclusion can be made that the reaction of 1 with IQ+ proceeds by direct one-step hydride transfer mechanism, but the reactions of 1 with T+ and Xn+ would take place via multistep hydride transfer mechanism initiated by one-electron transfer.
AB - Cations 2-methyl-5-mitroisoquinplinium (IQ+), tropylium (T+), and xanthylium (Xn+) were treated by an NAD(P)H model 1-(p-substituted phenyl)-1.4-dihydronicotinamide series (1) in buffered aqueous solution to give the corresponding reduced products by accepting hydride. Effects of the 4-substituents of 1 on the reaction rates were investigated. Hammett's linear free energy relationship analysis on the three reactions of 1 provides the reaction constants of -0.48, -2.2, and -1.4 with IQ+, T+, and Xn+ as the hydride acceptors, respectively. Comparison of the present reactions with the reaction examples whose mechanisms are well-known, such as the reaction of 1 with a one-electron oxidant Fe(CN)6-3, shows that the active site of 1 in the oxidation with IQ+ is at the 4-position on the dihydropyridine ring but that the active site of 1 in the oxidations with T+ and Xn+ is at the 1-position, which is in agreement with the results from the Brønsted-type linear analysis and the relation studies of the logarithm of the second-order rate constants with the oxidation potentials of the hydride donors. According to the dependence of the reaction mechanism on the active site of 1, a conclusion can be made that the reaction of 1 with IQ+ proceeds by direct one-step hydride transfer mechanism, but the reactions of 1 with T+ and Xn+ would take place via multistep hydride transfer mechanism initiated by one-electron transfer.
UR - http://www.scopus.com/inward/record.url?scp=0035951597&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0035951597&partnerID=8YFLogxK
U2 - 10.1021/jo0009696
DO - 10.1021/jo0009696
M3 - Article
C2 - 11429802
AN - SCOPUS:0035951597
SN - 0022-3263
VL - 66
SP - 370
EP - 375
JO - Journal of Organic Chemistry
JF - Journal of Organic Chemistry
IS - 2
ER -