An investigation of warm rainfall microphysics in the southern Appalachians: Orographic enhancement via low-level seeder-feeder interactions

Anna M. Wilson, Ana P. Barros

Research output: Contribution to journalArticlepeer-review

Abstract

Observations of the vertical structure of rainfall, surface rain rates, and drop size distributions (DSDs) in the southern Appalachians were analyzed with a focus on the diurnal cycle of rainfall. In the inner mountain region, a 5-yr high-elevation rain gauge dataset shows that light rainfall, described here as rainfall intensity less than 3mmh-1 over a time scale of 5 min, accounts for 30%-50%of annual accumulations. The data also reveal warm-season events characterized by heavy surface rainfall in valleys and along ridgelines inconsistent with radar observations of the vertical structure of precipitation. Next, a stochastic columnmodel of advection-coalescence-breakup of warm rain DSDs was used to investigate three illustrative events. The integrated analysis of observations and model simulations suggests that seeder-feeder interactions (i.e., Bergeron processes) between incoming rainfall systems and local fog and/or low-level clouds with very high number concentrations of small drops (,0.2mm) govern surface rainfall intensity through driving significant increases in coalescence rates and efficiency. Specifically, the model shows how accelerated growth of small- and moderatesize raindrops (,2mm) viaBergeron processes can enhance surface rainfall rates by one order ofmagnitude for durations up to 1 h as in the observations. An examination of the fingerprints of seeder-feeder processes on DSD statistics conducted by tracking the temporal evolution of mass spectrum parameters points to the critical need for improved characterization of hydrometeor microstructure evolution, from mist formation to fog and from drizzle development to rainfall.

Original languageEnglish (US)
Pages (from-to)1783-1805
Number of pages23
JournalJournal of the Atmospheric Sciences
Volume71
Issue number5
DOIs
StatePublished - May 2014
Externally publishedYes

ASJC Scopus subject areas

  • Atmospheric Science

Fingerprint

Dive into the research topics of 'An investigation of warm rainfall microphysics in the southern Appalachians: Orographic enhancement via low-level seeder-feeder interactions'. Together they form a unique fingerprint.

Cite this