TY - GEN
T1 - An integral tag recommendation model for textual content
AU - Tang, Shijie
AU - Yao, Yuan
AU - Zhang, Suwei
AU - Xu, Feng
AU - Gu, Tianxiao
AU - Tong, Hanghang
AU - Yan, Xiaohui
AU - Lu, Jian
N1 - Publisher Copyright:
Copyright © 2019, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2019
Y1 - 2019
N2 - Recommending suitable tags for online textual content is a key building block for better content organization and consumption. In this paper, we identify three pillars that impact the accuracy of tag recommendation: (1) sequential text modeling meaning that the intrinsic sequential ordering as well as different areas of text might have an important implication on the corresponding tag(s), (2) tag correlation meaning that the tags for a certain piece of textual content are often semantically correlated with each other, and (3) content-tag overlapping meaning that the vocabularies of content and tags are overlapped. However, none of the existing methods consider all these three aspects, leading to a suboptimal tag recommendation. In this paper, we propose an integral model to encode all the three aspects in a coherent encoder-decoder framework. In particular, (1) the encoder models the semantics of the textual content via Recurrent Neural Networks with the attention mechanism, (2) the decoder tackles the tag correlation with a prediction path, and (3) a shared embedding layer and an indicator function across encoder-decoder address the content-tag overlapping. Experimental results on three real-world datasets demonstrate that the proposed method significantly outperforms the existing methods in terms of recommendation accuracy.
AB - Recommending suitable tags for online textual content is a key building block for better content organization and consumption. In this paper, we identify three pillars that impact the accuracy of tag recommendation: (1) sequential text modeling meaning that the intrinsic sequential ordering as well as different areas of text might have an important implication on the corresponding tag(s), (2) tag correlation meaning that the tags for a certain piece of textual content are often semantically correlated with each other, and (3) content-tag overlapping meaning that the vocabularies of content and tags are overlapped. However, none of the existing methods consider all these three aspects, leading to a suboptimal tag recommendation. In this paper, we propose an integral model to encode all the three aspects in a coherent encoder-decoder framework. In particular, (1) the encoder models the semantics of the textual content via Recurrent Neural Networks with the attention mechanism, (2) the decoder tackles the tag correlation with a prediction path, and (3) a shared embedding layer and an indicator function across encoder-decoder address the content-tag overlapping. Experimental results on three real-world datasets demonstrate that the proposed method significantly outperforms the existing methods in terms of recommendation accuracy.
UR - http://www.scopus.com/inward/record.url?scp=85075474614&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85075474614&partnerID=8YFLogxK
U2 - 10.1609/aaai.v33i01.33015109
DO - 10.1609/aaai.v33i01.33015109
M3 - Conference contribution
AN - SCOPUS:85075474614
T3 - 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
SP - 5109
EP - 5116
BT - 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
PB - American Association for Artificial Intelligence (AAAI) Press
T2 - 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Annual Conference on Innovative Applications of Artificial Intelligence, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
Y2 - 27 January 2019 through 1 February 2019
ER -