Abstract
We consider deletion correcting codes over a q -ary alphabet. It is well known that any code capable of correcting s deletions can also correct any combination of s total insertions and deletions. To obtain asymptotic upper bounds on code size, we apply a packing argument to channels that perform different mixtures of insertions and deletions. Even though the set of codes is identical for all of these channels, the bounds that we obtain vary. Prior to this paper, only the bounds corresponding to the all-insertion case and the all-deletion case were known. We recover these as special cases. The bound from the all-deletion case, due to Levenshtein, has been the best known for more than 45 years. Our generalized bound is better than Levenshtein's bound whenever the number of deletions to be corrected is larger than the alphabet size.
Original language | English (US) |
---|---|
Article number | 6799187 |
Pages (from-to) | 3862-3870 |
Number of pages | 9 |
Journal | IEEE Transactions on Information Theory |
Volume | 60 |
Issue number | 7 |
DOIs | |
State | Published - Jul 2014 |
Externally published | Yes |
Keywords
- Codes
- combinatorial mathematics
ASJC Scopus subject areas
- Information Systems
- Computer Science Applications
- Library and Information Sciences