TY - JOUR
T1 - An improved analysis of (variance-reduced) policy gradient and natural policy gradient methods
AU - Liu, Yanli
AU - Zhang, Kaiqing
AU - Basar, Tamer
AU - Yin, Wotao
N1 - Publisher Copyright:
© 2020 Neural information processing systems foundation. All rights reserved.
PY - 2020
Y1 - 2020
N2 - In this paper, we revisit and improve the convergence of policy gradient (PG), natural PG (NPG) methods, and their variance-reduced variants, under general smooth policy parametrizations. More specifically, with the Fisher information matrix of the policy being positive definite: i) we show that a state-of-the-art variance-reduced PG method, which has only been shown to converge to stationary points, converges to the globally optimal value up to some inherent function approximation error due to policy parametrization; ii) we show that NPG enjoys a lower sample complexity; iii) we propose SRVR-NPG, which incorporates variance-reduction into the NPG update. Our improvements follow from an observation that the convergence of (variance-reduced) PG and NPG methods can improve each other: the stationary convergence analysis of PG can be applied to NPG as well, and the global convergence analysis of NPG can help to establish the global convergence of (variance-reduced) PG methods. Our analysis carefully integrates the advantages of these two lines of works. Thanks to this improvement, we have also made variance-reduction for NPG possible, with both global convergence and an efficient finite-sample complexity.
AB - In this paper, we revisit and improve the convergence of policy gradient (PG), natural PG (NPG) methods, and their variance-reduced variants, under general smooth policy parametrizations. More specifically, with the Fisher information matrix of the policy being positive definite: i) we show that a state-of-the-art variance-reduced PG method, which has only been shown to converge to stationary points, converges to the globally optimal value up to some inherent function approximation error due to policy parametrization; ii) we show that NPG enjoys a lower sample complexity; iii) we propose SRVR-NPG, which incorporates variance-reduction into the NPG update. Our improvements follow from an observation that the convergence of (variance-reduced) PG and NPG methods can improve each other: the stationary convergence analysis of PG can be applied to NPG as well, and the global convergence analysis of NPG can help to establish the global convergence of (variance-reduced) PG methods. Our analysis carefully integrates the advantages of these two lines of works. Thanks to this improvement, we have also made variance-reduction for NPG possible, with both global convergence and an efficient finite-sample complexity.
UR - http://www.scopus.com/inward/record.url?scp=85108370798&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85108370798&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:85108370798
SN - 1049-5258
VL - 2020-December
JO - Advances in Neural Information Processing Systems
JF - Advances in Neural Information Processing Systems
T2 - 34th Conference on Neural Information Processing Systems, NeurIPS 2020
Y2 - 6 December 2020 through 12 December 2020
ER -