Abstract
An immersogeometric formulation is proposed to simulate free-surface flows around structures with complex geometry. The fluid–fluid interface (air–water interface) is handled by the level set method, while the fluid–structure interface is handled through an immersogeometric approach by immersing structures into non-boundary-fitted meshes and enforcing Dirichlet boundary conditions weakly. Residual-based variational multiscale method (RBVMS) is employed to stabilize the coupled Navier–Stokes equations of incompressible flows and level set convection equation. Other level set techniques, including re-distancing and mass balancing, are also incorporated into the immersed formulation. Adaptive quadrature rule is used to better capture the geometry of the immersed structure boundary by accurately integrating the intersected background elements. Generalized-α method is adopted for time integration, which results in a two-stage predictor multi-corrector algorithm. GMRES solver preconditioned with block Jacobian matrices of individual fluid and level set subproblems is used for solving the coupled linear systems arising from the multi-corrector stage. The capability and accuracy of the proposed method are assessed by simulating three challenging marine engineering problems, which are a solitary wave impacting a stationary platform, dam break with an obstacle, and planing of a DTMB 5415 ship model. A refinement study is performed. The predictions of key quantities of interest by the proposed formulation are in good agreement with experimental results and boundary-fitted simulation results from others. The proposed formulation has great potential for wide applications in marine engineering problems.
Original language | English (US) |
---|---|
Article number | 112748 |
Journal | Computer Methods in Applied Mechanics and Engineering |
Volume | 361 |
DOIs | |
State | Published - Apr 1 2020 |
Externally published | Yes |
Keywords
- Dam break
- Free-surface flows
- Immersogeometric method
- Level set method
- Shiphydrodynamics
ASJC Scopus subject areas
- Computational Mechanics
- Mechanics of Materials
- Mechanical Engineering
- General Physics and Astronomy
- Computer Science Applications