TY - JOUR
T1 - An extension of the athena++ framework for fully conservative self-gravitating hydrodynamics
AU - Mullen, P. D.
AU - Hanawa, Tomoyuki
AU - Gammie, C. F.
N1 - Publisher Copyright:
© 2021. The American Astronomical Society. All rights reserved.
PY - 2021/2
Y1 - 2021/2
N2 - Numerical simulations of self-gravitating flows evolve a momentum equation and an energy equation that account for accelerations and gravitational energy releases due to a time-dependent gravitational potential. In this work, we implement a fully conservative numerical algorithm for self-gravitating flows, using source terms, in the astrophysical magnetohydrodynamics framework Athena++. We demonstrate that properly evaluated source terms are conservative when they are equivalent to the divergence of a corresponding "gravity flux"(i.e., a gravitational stress tensor or a gravitational energy flux). We provide test problems that demonstrate several advantages of the source-term-based algorithm, including second-order convergence and round-off error total momentum and total energy conservation. The fully conservative scheme suppresses anomalous accelerations that arise when applying a common numerical discretization of the gravitational stress tensor that does not guarantee curl-free gravity.
AB - Numerical simulations of self-gravitating flows evolve a momentum equation and an energy equation that account for accelerations and gravitational energy releases due to a time-dependent gravitational potential. In this work, we implement a fully conservative numerical algorithm for self-gravitating flows, using source terms, in the astrophysical magnetohydrodynamics framework Athena++. We demonstrate that properly evaluated source terms are conservative when they are equivalent to the divergence of a corresponding "gravity flux"(i.e., a gravitational stress tensor or a gravitational energy flux). We provide test problems that demonstrate several advantages of the source-term-based algorithm, including second-order convergence and round-off error total momentum and total energy conservation. The fully conservative scheme suppresses anomalous accelerations that arise when applying a common numerical discretization of the gravitational stress tensor that does not guarantee curl-free gravity.
UR - http://www.scopus.com/inward/record.url?scp=85101647455&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85101647455&partnerID=8YFLogxK
U2 - 10.3847/1538-4365/abcfbd
DO - 10.3847/1538-4365/abcfbd
M3 - Article
AN - SCOPUS:85101647455
SN - 0067-0049
VL - 252
JO - Astrophysical Journal, Supplement Series
JF - Astrophysical Journal, Supplement Series
IS - 2
M1 - abcfbd
ER -