An Extended Catalog of Galaxy-Galaxy Strong Gravitational Lenses Discovered in des Using Convolutional Neural Networks

C. Jacobs, T. Collett, K. Glazebrook, E. Buckley-Geer, H. T. Diehl, H. Lin, C. McCarthy, A. K. Qin, C. Odden, M. Caso Escudero, P. Dial, V. J. Yung, S. Gaitsch, A. Pellico, K. A. Lindgren, T. M.C. Abbott, J. Annis, S. Avila, D. Brooks, D. L. BurkeA. Carnero Rosell, M. Carrasco Kind, J. Carretero, L. N.Da Costa, J. De Vicente, P. Fosalba, J. Frieman, J. García-Bellido, E. Gaztanaga, D. A. Goldstein, D. Gruen, Robert A Gruendl, J. Gschwend, D. L. Hollowood, K. Honscheid, B. Hoyle, D. J. James, E. Krause, N. Kuropatkin, O. Lahav, M. Lima, M. A.G. Maia, J. L. Marshall, R. Miquel, A. A. Plazas, A. Roodman, E. Sanchez, V. Scarpine, S. Serrano, I. Sevilla-Noarbe, M. Smith, F. Sobreira, E. Suchyta, M. E.C. Swanson, G. Tarle, V. Vikram, A. R. Walker, Y. Zhang

Research output: Contribution to journalArticle

Abstract

We search Dark Energy Survey (DES) Year 3 imaging for galaxy-galaxy strong gravitational lenses using convolutional neural networks, extending previous work with new training sets and covering a wider range of redshifts and colors. We train two neural networks using images of simulated lenses, then use them to score postage-stamp images of 7.9 million sources from DES chosen to have plausible lens colors based on simulations. We examine 1175 of the highest-scored candidates and identify 152 probable or definite lenses. Examining an additional 20,000 images with lower scores, we identify a further 247 probable or definite candidates. After including 86 candidates discovered in earlier searches using neural networks and 26 candidates discovered through visual inspection of blue-near-red objects in the DES catalog, we present a catalog of 511 lens candidates.

Original languageEnglish (US)
Article number17
JournalAstrophysical Journal, Supplement Series
Volume243
Issue number1
DOIs
StatePublished - Jan 1 2019

Fingerprint

gravitational lenses
catalogs
dark energy
lenses
galaxies
energy
color
train
inspection
coverings
education
simulation

Keywords

  • gravitational lensing: strong
  • methods: data analysis
  • methods: statistical
  • surveys

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Cite this

An Extended Catalog of Galaxy-Galaxy Strong Gravitational Lenses Discovered in des Using Convolutional Neural Networks. / Jacobs, C.; Collett, T.; Glazebrook, K.; Buckley-Geer, E.; Diehl, H. T.; Lin, H.; McCarthy, C.; Qin, A. K.; Odden, C.; Escudero, M. Caso; Dial, P.; Yung, V. J.; Gaitsch, S.; Pellico, A.; Lindgren, K. A.; Abbott, T. M.C.; Annis, J.; Avila, S.; Brooks, D.; Burke, D. L.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; Costa, L. N.Da; Vicente, J. De; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gaztanaga, E.; Goldstein, D. A.; Gruen, D.; Gruendl, Robert A; Gschwend, J.; Hollowood, D. L.; Honscheid, K.; Hoyle, B.; James, D. J.; Krause, E.; Kuropatkin, N.; Lahav, O.; Lima, M.; Maia, M. A.G.; Marshall, J. L.; Miquel, R.; Plazas, A. A.; Roodman, A.; Sanchez, E.; Scarpine, V.; Serrano, S.; Sevilla-Noarbe, I.; Smith, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E.C.; Tarle, G.; Vikram, V.; Walker, A. R.; Zhang, Y.

In: Astrophysical Journal, Supplement Series, Vol. 243, No. 1, 17, 01.01.2019.

Research output: Contribution to journalArticle

Jacobs, C, Collett, T, Glazebrook, K, Buckley-Geer, E, Diehl, HT, Lin, H, McCarthy, C, Qin, AK, Odden, C, Escudero, MC, Dial, P, Yung, VJ, Gaitsch, S, Pellico, A, Lindgren, KA, Abbott, TMC, Annis, J, Avila, S, Brooks, D, Burke, DL, Rosell, AC, Kind, MC, Carretero, J, Costa, LND, Vicente, JD, Fosalba, P, Frieman, J, García-Bellido, J, Gaztanaga, E, Goldstein, DA, Gruen, D, Gruendl, RA, Gschwend, J, Hollowood, DL, Honscheid, K, Hoyle, B, James, DJ, Krause, E, Kuropatkin, N, Lahav, O, Lima, M, Maia, MAG, Marshall, JL, Miquel, R, Plazas, AA, Roodman, A, Sanchez, E, Scarpine, V, Serrano, S, Sevilla-Noarbe, I, Smith, M, Sobreira, F, Suchyta, E, Swanson, MEC, Tarle, G, Vikram, V, Walker, AR & Zhang, Y 2019, 'An Extended Catalog of Galaxy-Galaxy Strong Gravitational Lenses Discovered in des Using Convolutional Neural Networks', Astrophysical Journal, Supplement Series, vol. 243, no. 1, 17. https://doi.org/10.3847/1538-4365/ab26b6
Jacobs, C. ; Collett, T. ; Glazebrook, K. ; Buckley-Geer, E. ; Diehl, H. T. ; Lin, H. ; McCarthy, C. ; Qin, A. K. ; Odden, C. ; Escudero, M. Caso ; Dial, P. ; Yung, V. J. ; Gaitsch, S. ; Pellico, A. ; Lindgren, K. A. ; Abbott, T. M.C. ; Annis, J. ; Avila, S. ; Brooks, D. ; Burke, D. L. ; Rosell, A. Carnero ; Kind, M. Carrasco ; Carretero, J. ; Costa, L. N.Da ; Vicente, J. De ; Fosalba, P. ; Frieman, J. ; García-Bellido, J. ; Gaztanaga, E. ; Goldstein, D. A. ; Gruen, D. ; Gruendl, Robert A ; Gschwend, J. ; Hollowood, D. L. ; Honscheid, K. ; Hoyle, B. ; James, D. J. ; Krause, E. ; Kuropatkin, N. ; Lahav, O. ; Lima, M. ; Maia, M. A.G. ; Marshall, J. L. ; Miquel, R. ; Plazas, A. A. ; Roodman, A. ; Sanchez, E. ; Scarpine, V. ; Serrano, S. ; Sevilla-Noarbe, I. ; Smith, M. ; Sobreira, F. ; Suchyta, E. ; Swanson, M. E.C. ; Tarle, G. ; Vikram, V. ; Walker, A. R. ; Zhang, Y. / An Extended Catalog of Galaxy-Galaxy Strong Gravitational Lenses Discovered in des Using Convolutional Neural Networks. In: Astrophysical Journal, Supplement Series. 2019 ; Vol. 243, No. 1.
@article{e3153f98e31a4802b218ca9f741ae0f9,
title = "An Extended Catalog of Galaxy-Galaxy Strong Gravitational Lenses Discovered in des Using Convolutional Neural Networks",
abstract = "We search Dark Energy Survey (DES) Year 3 imaging for galaxy-galaxy strong gravitational lenses using convolutional neural networks, extending previous work with new training sets and covering a wider range of redshifts and colors. We train two neural networks using images of simulated lenses, then use them to score postage-stamp images of 7.9 million sources from DES chosen to have plausible lens colors based on simulations. We examine 1175 of the highest-scored candidates and identify 152 probable or definite lenses. Examining an additional 20,000 images with lower scores, we identify a further 247 probable or definite candidates. After including 86 candidates discovered in earlier searches using neural networks and 26 candidates discovered through visual inspection of blue-near-red objects in the DES catalog, we present a catalog of 511 lens candidates.",
keywords = "gravitational lensing: strong, methods: data analysis, methods: statistical, surveys",
author = "C. Jacobs and T. Collett and K. Glazebrook and E. Buckley-Geer and Diehl, {H. T.} and H. Lin and C. McCarthy and Qin, {A. K.} and C. Odden and Escudero, {M. Caso} and P. Dial and Yung, {V. J.} and S. Gaitsch and A. Pellico and Lindgren, {K. A.} and Abbott, {T. M.C.} and J. Annis and S. Avila and D. Brooks and Burke, {D. L.} and Rosell, {A. Carnero} and Kind, {M. Carrasco} and J. Carretero and Costa, {L. N.Da} and Vicente, {J. De} and P. Fosalba and J. Frieman and J. Garc{\'i}a-Bellido and E. Gaztanaga and Goldstein, {D. A.} and D. Gruen and Gruendl, {Robert A} and J. Gschwend and Hollowood, {D. L.} and K. Honscheid and B. Hoyle and James, {D. J.} and E. Krause and N. Kuropatkin and O. Lahav and M. Lima and Maia, {M. A.G.} and Marshall, {J. L.} and R. Miquel and Plazas, {A. A.} and A. Roodman and E. Sanchez and V. Scarpine and S. Serrano and I. Sevilla-Noarbe and M. Smith and F. Sobreira and E. Suchyta and Swanson, {M. E.C.} and G. Tarle and V. Vikram and Walker, {A. R.} and Y. Zhang",
year = "2019",
month = "1",
day = "1",
doi = "10.3847/1538-4365/ab26b6",
language = "English (US)",
volume = "243",
journal = "Astrophysical Journal, Supplement Series",
issn = "0067-0049",
publisher = "IOP Publishing Ltd.",
number = "1",

}

TY - JOUR

T1 - An Extended Catalog of Galaxy-Galaxy Strong Gravitational Lenses Discovered in des Using Convolutional Neural Networks

AU - Jacobs, C.

AU - Collett, T.

AU - Glazebrook, K.

AU - Buckley-Geer, E.

AU - Diehl, H. T.

AU - Lin, H.

AU - McCarthy, C.

AU - Qin, A. K.

AU - Odden, C.

AU - Escudero, M. Caso

AU - Dial, P.

AU - Yung, V. J.

AU - Gaitsch, S.

AU - Pellico, A.

AU - Lindgren, K. A.

AU - Abbott, T. M.C.

AU - Annis, J.

AU - Avila, S.

AU - Brooks, D.

AU - Burke, D. L.

AU - Rosell, A. Carnero

AU - Kind, M. Carrasco

AU - Carretero, J.

AU - Costa, L. N.Da

AU - Vicente, J. De

AU - Fosalba, P.

AU - Frieman, J.

AU - García-Bellido, J.

AU - Gaztanaga, E.

AU - Goldstein, D. A.

AU - Gruen, D.

AU - Gruendl, Robert A

AU - Gschwend, J.

AU - Hollowood, D. L.

AU - Honscheid, K.

AU - Hoyle, B.

AU - James, D. J.

AU - Krause, E.

AU - Kuropatkin, N.

AU - Lahav, O.

AU - Lima, M.

AU - Maia, M. A.G.

AU - Marshall, J. L.

AU - Miquel, R.

AU - Plazas, A. A.

AU - Roodman, A.

AU - Sanchez, E.

AU - Scarpine, V.

AU - Serrano, S.

AU - Sevilla-Noarbe, I.

AU - Smith, M.

AU - Sobreira, F.

AU - Suchyta, E.

AU - Swanson, M. E.C.

AU - Tarle, G.

AU - Vikram, V.

AU - Walker, A. R.

AU - Zhang, Y.

PY - 2019/1/1

Y1 - 2019/1/1

N2 - We search Dark Energy Survey (DES) Year 3 imaging for galaxy-galaxy strong gravitational lenses using convolutional neural networks, extending previous work with new training sets and covering a wider range of redshifts and colors. We train two neural networks using images of simulated lenses, then use them to score postage-stamp images of 7.9 million sources from DES chosen to have plausible lens colors based on simulations. We examine 1175 of the highest-scored candidates and identify 152 probable or definite lenses. Examining an additional 20,000 images with lower scores, we identify a further 247 probable or definite candidates. After including 86 candidates discovered in earlier searches using neural networks and 26 candidates discovered through visual inspection of blue-near-red objects in the DES catalog, we present a catalog of 511 lens candidates.

AB - We search Dark Energy Survey (DES) Year 3 imaging for galaxy-galaxy strong gravitational lenses using convolutional neural networks, extending previous work with new training sets and covering a wider range of redshifts and colors. We train two neural networks using images of simulated lenses, then use them to score postage-stamp images of 7.9 million sources from DES chosen to have plausible lens colors based on simulations. We examine 1175 of the highest-scored candidates and identify 152 probable or definite lenses. Examining an additional 20,000 images with lower scores, we identify a further 247 probable or definite candidates. After including 86 candidates discovered in earlier searches using neural networks and 26 candidates discovered through visual inspection of blue-near-red objects in the DES catalog, we present a catalog of 511 lens candidates.

KW - gravitational lensing: strong

KW - methods: data analysis

KW - methods: statistical

KW - surveys

UR - http://www.scopus.com/inward/record.url?scp=85071163691&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85071163691&partnerID=8YFLogxK

U2 - 10.3847/1538-4365/ab26b6

DO - 10.3847/1538-4365/ab26b6

M3 - Article

AN - SCOPUS:85071163691

VL - 243

JO - Astrophysical Journal, Supplement Series

JF - Astrophysical Journal, Supplement Series

SN - 0067-0049

IS - 1

M1 - 17

ER -