An enhanced microstructure-level finite element machining model for carbon nanotube (CNT)-polymer composites

Lingyun Jiang, Chandra Nath, Johnson Samuel, Shiv G. Kapoor

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

During the machining of carbon nanotube (CNT)-polymer composites, the interface plays a critical role in the load transfer between polymer and CNT. Therefore, the interface for these composites has to be explicitly considered in the microstructure- level finite element (FE) machining model, so as to better understand their machinability and the interfacial failure mechanisms. In this study, a microstructure-level FE machining model for CNT-polymer composites has been developed by considering the interface as the third phase, in addition to the polymer and the CNT phases. For the interface, two interfacial properties, viz., interfacial strength and fracture energy have been included. To account for variable temperature and strain rate over the deformation zone during machining, temperature-and strain rate-dependent mechanical properties for the interface and the polymer material have also been included in the model. It is found that the FE machining model predicts cutting force within 6% of the experimental values at different machining conditions and CNT loadings. The cutting force data reveals that the model can accurately capture the CNT pull-out/protrusion, and the subsequent surface damage. Simulated surface damage characteristics are supported by the surface topographies and roughness values obtained from the machining experiments. The study suggests that the model can be utilized to design the new generation of CNT-polymer composites with specific interfacial properties that minimize the surface/subsurface damage and improve the surface finish.

Original languageEnglish (US)
Title of host publicationASME 2014 International Manufacturing Science and Engineering Conference, MSEC 2014 Collocated with the JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference
PublisherWeb Portal ASME (American Society of Mechanical Engineers)
ISBN (Electronic)9780791845813
DOIs
StatePublished - 2014
EventASME 2014 International Manufacturing Science and Engineering Conference, MSEC 2014 Collocated with the JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference - Detroit, United States
Duration: Jun 9 2014Jun 13 2014

Publication series

NameASME 2014 International Manufacturing Science and Engineering Conference, MSEC 2014 Collocated with the JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference
Volume2

Other

OtherASME 2014 International Manufacturing Science and Engineering Conference, MSEC 2014 Collocated with the JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference
Country/TerritoryUnited States
CityDetroit
Period6/9/146/13/14

Keywords

  • CNT-polymer composite
  • Finite element
  • Interface
  • Machining responses
  • Microstructure-level machining model

ASJC Scopus subject areas

  • Industrial and Manufacturing Engineering

Fingerprint

Dive into the research topics of 'An enhanced microstructure-level finite element machining model for carbon nanotube (CNT)-polymer composites'. Together they form a unique fingerprint.

Cite this