TY - GEN
T1 - An efficient map-reduce algorithm for the incremental computation of all-pairs shortest paths in social networks
AU - Khopkar, Sushant S.
AU - Nagi, Rakesh
AU - Nikolaev, Alexander G.
N1 - Copyright:
Copyright 2013 Elsevier B.V., All rights reserved.
PY - 2012
Y1 - 2012
N2 - Today's social networks are getting larger, and the need to analyze datasets with millions of nodes and billions of edges is not uncommon any more. As a network of social relationships evolves by the addition of new nodes and edges, fast algorithms are desirable for the recomputation of key network measures such as actor centrality. The distributed computing paradigm offers a scalable approach to addressing the recomputation challenge. This paper develops a Map-Reduce implementation of an incremental All-Pairs Shortest Path (APSP) algorithm. The incremental nature of the approach allows for performing minimal work in updating centrality measures, while the Map-Reduce implementation makes it scalable to large data. The key idea of the incremental APSP algorithm [1] is based on the efficient use of past information about the shortest paths between any node and the neighbors of the newly added node. A presented parallelized version of the algorithm relies on a three-step iterative execution of the "map" and "reduce" jobs. Experiences with its implementation are reported in application to a real-world dataset containing 7115 nodes. The experimental runs were performed using the Amazon's EMR service.
AB - Today's social networks are getting larger, and the need to analyze datasets with millions of nodes and billions of edges is not uncommon any more. As a network of social relationships evolves by the addition of new nodes and edges, fast algorithms are desirable for the recomputation of key network measures such as actor centrality. The distributed computing paradigm offers a scalable approach to addressing the recomputation challenge. This paper develops a Map-Reduce implementation of an incremental All-Pairs Shortest Path (APSP) algorithm. The incremental nature of the approach allows for performing minimal work in updating centrality measures, while the Map-Reduce implementation makes it scalable to large data. The key idea of the incremental APSP algorithm [1] is based on the efficient use of past information about the shortest paths between any node and the neighbors of the newly added node. A presented parallelized version of the algorithm relies on a three-step iterative execution of the "map" and "reduce" jobs. Experiences with its implementation are reported in application to a real-world dataset containing 7115 nodes. The experimental runs were performed using the Amazon's EMR service.
UR - http://www.scopus.com/inward/record.url?scp=84874274777&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84874274777&partnerID=8YFLogxK
U2 - 10.1109/ASONAM.2012.197
DO - 10.1109/ASONAM.2012.197
M3 - Conference contribution
AN - SCOPUS:84874274777
SN - 9780769547992
T3 - Proceedings of the 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2012
SP - 1144
EP - 1148
BT - Proceedings of the 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2012
T2 - 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2012
Y2 - 26 August 2012 through 29 August 2012
ER -